• Dispur,Guwahati,Assam 781005
  • mylearnedu@gmail.com

13. Statistics

SEBA Class 10 Maths Chapter 13 Statistics

Chapter 13. Statistics

Class 10 Maths Chapter 13. Statistics Multiple Choice Questions and Solutions :

Question : The median of the distribution 41 , 39 , 48 , 52 , 46 , 62 , 54 is : [SEBA 2013]

(a)  46    (b)  48     (c)  52     (d)  54

Solution: (b)  48    

[ Here , 

We arrange the data in ascending order , we have

39 , 41 , 46 , 48 , 52 , 54 , 62

The median

]

Question : The mode of the distribution : 4 , 5 , 6 , 3 , 4 , 5 , 2 , 8 , 4 , 2 is ; [SEBA 2014]

(a) 5      (b) 4.5   (c) 4   (d) 8

Solution : (c)  4

[ Here  4 occurs most frequency  i.e., three times . So, the mode is 4 .]

Question : The wickets taken by a bowler in 10 cricket matches are as follows : [SEBA 2015]

2 , 6 , 4 , 5 , 0 , 3 , 1 , 3 , 2 , 3

Mode the data is :

(a) 1   (b) 2   (c) 3   (d) 5

Solution :  (c) 3

[ Here  3 occurs most frequency  i.e., three times . So, the mode is 3 .]

Question : Mean or average of 1 , 2 , 3 , 4 , ……… ,  is : [SEBA 2017]

(a)       (b)    (c)     (d)

Solution : (a)   

[ We have ,  Mean

]

Question : The median and mode of a data are 33 and 45 respectively . Then its mean is : [SEBA 2016 , 2023]

(a)  30    (b) 33   (c)  27     (d) 35 

Solution :  (c)  27

[ We know that ,

 

 

  ]

Question : The wickets taken by a bowler in 8 cricket matches are as follows :  [SEBA 2018]

3 , 2 , 0 , 1 , 6 , 2 , 1 , 2

The mode of the data is :

(a)   3       (b)  6      (c)  2       (d)  1

Solution :  (c) 2

[ Here  2 occurs most frequency  i.e., three times . So, the mode is 2 .]

Question :  If the mean of 15, 12 ,  , 10, 16 , 19 is 12 ,then the value of  .

            (a)  1                         (b)  7                         (c)  2                              (d)  0

Solution:    (d)  0  .

  [ We have ,  

   

         

   ; The value of   is 0 .    ]  

Question : The mean of first 10 odd numbers is :

(a)  10         (b) 100        (c) 20       (d) 30

Solution : (a)  10

 [  We have ,

Mean

  ]

Question : The median class of the following data is :

Classes

0 – 10

10 – 20

20 – 30

30 – 40

40 – 50

50 – 60

60 – 70

Frequency

   4

    4

    8

    10

    12

    8

     4

(a) 30 – 40            (b) 40 – 50          (c) 20 – 30           (d) 50 – 60

Solution:  (b) 40 – 50

 [ Here ,  

 This observation lies in the class 30 – 40 .

 The median is 12 , which lies in the class 40 – 50 . ]

Question :  The median class of the following data is :               

Class interval

10 – 20

20 – 30

30 – 40

40 – 50

50 – 60

Frequency

14

11

13

15

17

(a)  30 – 40            (b)  10 – 20          (c) 50 – 60            (d) 20 – 30           

Solution:  (a)  30 – 40   

[ we construct the table :                           

Class interval

Frequency

C.f

10 – 20

20 – 30

30 – 40

40 – 50

50 - 60

14

11

13

15

17

14

25

38

53

70

 Here,   

 This observation lies in the class 30 – 40 . ]  

Question : The model class of the following data is :           

Class interval

15 – 25

25 – 35

35 – 45

45 – 55

55 – 65

65 – 75

Frequency

6

11

7

4

4

2

 (a)  6              (b)  7         (c)  4           (d) 11 

Solution:   (d)  11 

[ The mode is the most frequency occurring observation . ]

Question : The abscissa of the point of intersection of the less than type and of the more than type cumulative frequency curves of a grouped data gives its : 

         (a)  mean             (b)  median             (c)  mode             (d)  all the three above

Solution:    (b) median .

Question :  The median of the observations  11 , 12 , 14 , 18 ,  ,  , 30 , 32 , 35 , 41 arranged in ascending  order is 24 , then the value of  :

(a) 31         (b) 11         (c) 18        (d) 21

Solution:  (d) 21

[   Here,  .

 A/Q,   Median  

                ]

Question :  The following table gives the literacy rate ( in percentage ) of 35 cities .

Literacy rate(in )

45 – 55

55 – 65

65 – 75

75 – 85

85 – 95

Number of cities

3

10

11

8

3

The upper limit of the median class in the given data is :

 (a) 55           (b) 75          (c)  65         (d) 85

Solution:  (c) 65

[ Here ,  ;   = 17.5 .

We observe that the cumulative frequency just greater than  17.5 is 24 and the corresponding class is 60 – 70 . The upper limit is 65 . ]

   Class 10 Statistics Fill in the blanks 

Q1. The cumulative frequency table is useful in determining the   .

Answer : Median   .

Class 10 Statistics Answers following the questions 

Question : If upper class limit and lower class limit are 55 and 40 , then find the class mark .

       OR  

If the class interval of the data is 40 – 55 , then find the class mark .

 Solution :  We know that ,  Class mark

Question : If the class mark and lower class limit are 70 and 60 respectively , then find upper class limit .

Solution :  We know that,  Class mark  

Question :  Find the mode of the following marks (out of 10) obtained by 20 students :  4 , 6 , 5 , 9 , 3 , 2 , 7 , 7 , 6 , 5 , 4 , 9 , 10 , 10 , 3 , 4 , 7 , 6 , 9 , 9 

Solution : We arrange the given data in the following form : 2 , 3 , 3 , 4 , 4 ,4 , 5 , 5 , 6 , 6 , 6 , 7 , 7 , 7 , 9 , 9 , 9 , 9 , 10 , 10

Here, 9 occurs most frequently [ i.e., four time] . So, the mode is 9 .

Question : Find the mode of the following  data :  51 , 34 , 17 , 58 , 41 , 51 , 17 , 29 , 39 , 29 , 41 , 29

 Solution : We arrange the given data in the following form :  17 , 17 , 29 , 29 , 29 , 34 , 39 , 41 , 41 , 51 , 51 , 58

 Here, 29 occurs most frequently [ i.e., three time] . So, the mode is 29 .

Question : Find the median of the following data :  41 , 39 , 48 , 52 , 46 , 62 , 54 , 40 , 96 , 98 ,60

Solution : First of all we arrange the data in ascending  order , as follows : 39 , 40 , 41 , 46 , 48 , 52 , 54 , 60 , 62 , 96 , 98  

  Here   is odd

 Therefore, the median observation  observation observation  observation   

Question : Find the median of the following data :  48 , 29 , 84 , 32 , 78 , 95 , 72 , 53

Solution :  First of all we arrange the data in ascending  order , as follows :  29 , 32 , 48 , 53 , 72  , 78 , 84 , 95          

Here   is even

The median

Question : If the mode of a data is 45 and mean is 27 , the find the median of the data.

Solution : We know that , 3 Median = Mode + 2 Mean

 3 Median = 45 + 2 × 27 = 45 + 54 = 99 

 3 Median = 99

 Median 

Therefore, the median of the data is 33 .

Class 10 Statistics 5 Marks Questions and Answers   

Question : Consider the following distribution of daily wages of 50 workers of a factory .

Daily wages (in Rs)

100 – 120 

120 – 140

140 – 160

160 – 180

180 – 200

Number of workers

12

14

8

6

10

 Find the mean daily wages of the workers of the factory by using an appropriate method .

Solution:  We construct the distribution table ,

Daily wages

(in Rs)

   

 

No. of workers

 

100 – 120

110

 – 40

12

 – 480

120 – 140

130

 – 20

14

 – 280

140 – 160

150 (a)

0

8

0

160 – 180

170

20

6

120

180 – 200 

190

40  

10

400 

Total

 

 

  

 

Using the assumed mean method ,

   Mean

  Therefore, the wages of the workers of the factory is Rs 145.20 .

Question :  The following distribution shows the daily pocket allowance of children of a locality . The mean pocket allowance is Rs. 18 . Find the missing frequency  .

Daily pocket allowance (in Rs)

Number of children

11 – 13

13 – 15

15 – 17

17 – 19

19  - 21

21 – 23

23 – 25

7

6

9

13

5

4

Solution:  We construct the table ,

Daily pocket allowance (in Rs)

    

Number of children

 

11 – 13

13 – 15

15 – 17

17 – 19

19  - 21

21 – 23

23 – 25

12

14

16

18

20

22

24

7

6

9

13

 

5

4

84

84

144

234

  

110

96

Total

 

 

 

Mean

 

 

 

 

Therefore, the missing frequency is 20 .

Question : The marks obtained by 30 students of Class X of a certain school in a Mathematics paper consisting of 100 marks are presented in table below. Find the mean of the marks obtained by the students. [SEBA 2015]

Class interval

 10 – 25

 25 – 40

 40 – 55

 55 – 70

 70 – 85

 85 – 100

Number of students

 2

 3

 7

 6

 6

 6

 Solution : We construct the table :

Class interval

 Class marks

Number of students

   

 10 – 25

 17.5

 2

  35

 25 – 40

 32.5

 3

 97.5

 40 – 55

 47.5

 7

 332.5

 55 – 70

 62.5

 6

 375.5

 70 – 85

 77.5

 6

 465.5

 85 – 100

 92.5

 6

 555.0

 Total

 

   

    

Mean

Question :  The following table shows the ages of the patients admitted in a hospital during a year :

Age (in years)

Number of patients

5 – 15

15 – 25

25 – 35

35 – 45

45 – 55

55 – 65

6

11

21

23

14

5

Find the mode and the mean of the data given above . Compare and interpret the two measures of central tendency . [SEBA 2018]

Solution : We construct the table :

Age

Class mark

No. of patients

 

5 – 15

10

6

60

15 – 25

20

11

220

25 – 35

30

21

630

35 – 45

40

23

920

45 – 55

50

14

700

55 – 65

60

5

300

Total

 

80

2830

Here,  

Using the formula ,

  Mode

 years

Using the direct method ,

    Mean years

Therefore, the maximum number of patients admitted in the hospital are of the age 36.82 years , while on an average the age of a patient admitted to the hospital is 35.37 years .

Question :  If median of the distribution given below is 28.5 , find the values of  and  . [SEBA 2016,2021,2023]

Class interval

   Frequency

     0 – 10

    10 – 20

    20 – 30

    30 – 40

    40 – 50

     50 – 60

    5

     

    20

    15

      

     5

      Total

     60

Solution : We construct the distribution table :

Class interval

Frequency

       C.F.

  0 – 10

   5

   5

  10 – 20

   

 

  20 – 30

     20

  

  30 – 40

    15

  

  40 – 50

    

 

  50 – 60

      5

 

 Total

      60

 

  Given ,

 

 

The median is 28.5 , which lies in the class 20 – 30 .

Here,  

Using the formula ,

Median

 

 

 

Putting the value of  in  , we get

      

 

   

     The value of  and  .

Question : The marks distribution of 30 students in a mathematics examination are given below . Find the mode of this data . [SEBA 2019]

Class interval

10 – 25

25 – 40

40 – 55

55 – 70

70 – 85

85 – 100

Number of students

  2

  3

   7

  6

  6

  6

Solution : We have ,

Class interval

10 – 25

25 – 40

40 – 55

55 – 70

70 – 85

85 – 100

Number of students

   2

   3

    7

   6

   6

  6

     Here, , 

Using the formula ,

  Mode

Therefore , the mode of the data is 52 .

Question :  The median of the following data is 525 .Find the values of x and y , if the total frequency is 100 . [SEBA 2020]

Class interval

Frequency

   

              

 

    0 – 100  

100 – 200

200 – 300

300 – 400

400 – 500

500 – 600

600 – 700

700 – 800

800 – 900

900 – 1000

  2

   5

  

  12

  17

  20

    

  9

  7

  4

Solution :   We construct the table :

   Class interval

  Frequency

  Cumulative  frequency

    0 – 100  

    100 – 200

     200 – 300

     300 – 400

     400 – 500

     500 – 600

     600 – 700

     700 – 800

     800 – 900

     900 – 1000

         2

         5

        

        12

        17

        20

          

         9

         7

          4

               2

               7

       

    

    

    

 

 

 

 

Given,   ,

 

The median is  , which lies in the class  

 Here ,   ,   , ,  

   Using the formula :   Median

   

Putting in equation  we have, 

 

 Required the value of  and are and   respectively.

Question : The following distribution gives the daily income of 50 workers of a factory. 

Daily income (in Rs.)

100 – 120

120 – 140

140 – 160

160 – 180

180 – 200

Number of workers

12

14

8

6

10

Find the mean , mode  and  median of the given distribution .

Solution :  We construct the table :

Daily income (in Rs.)

      

       

 

C.F.

100 – 120

110

12

1320

12

120 – 140

130

14

1820

26

140 – 160

150

8

1200

34

160 – 180

170

6

1020

40

180 – 200

190

10

1900

50

Total

 

50

7260

 

Here,   ,

Using the formula of mean  :

  Mean

  Using the formula of mode :

  Here , ;    ;     ;   ;   

  Mode   ×

 ×

 +

 

   
  Using the formula of median :

   Here ,    .      So,   will be in 120 – 140 .

  This observation lies in the class 120 – 140 . So ,The frequency of  the median class is 14 .

     ;  ;   ;  

  Median  

   

Question : The table below shows the daily expenditure on food of 25 household in a locality.  

Daily expenditure (in Rs.)

100 – 150

150 – 200

200 – 250

250 – 300

300 – 350

Number of households

         4

          5

       12

        2

        2

Find the mean daily expenditure on food by the assumed mean method .

Solution :  We constructed the table :

Daily exp. (in Rs.)

No. of households  

Class mark

             

100 – 150

150 – 200

200 – 250

250 – 300

300 – 350

4

5

12

2

2

125

175

     225 

275

325

– 100

– 50

0

50

100

– 400

– 250

0

100

200

Total

         

 

 

 

    The assumed mean method

    

  Required the daily expenditure on the food is Rs. 211 .

Question : The distribution below shows the number of wickets taken by bowlers in one-day cricket matches .Find the mean number of wickets by choosing a suitable method . What does the mean signify ? [Using the assumed mean method .]

Number of wickets

20 – 60

60 – 100

100 – 150

150 – 250

250 – 350

350 – 450

Number of bowlers

7

5

16

12

2

3

Solution : We constructed the table :

    No. of wickets

   No. of bowlers 

      

     

        

          20 – 60

         60 – 100

       100 – 150

       150 – 250

       250 – 350

       350 – 450

                  7

                 5

               16

               12

                2

                3

      40

     80

    125

     200

    300

    400

            – 160

            – 120

             – 75

                 0

             100

             200

          – 1120

           – 600

        – 1200

                 0

            200

            600

Total

      

 

 

   

 Using the assumed mean method :

   Mean

    

    

      

  Therefore, the number of wickets taken by these 45 bowlers in one day cricket is 152.89 .

Question : Month pocket money of 50 students of a class are  given in the following distribution :

Monthly pocket money  (Rs.)

0 – 50

50 – 100

100 – 150

150 – 200

200 – 250

250 – 300

Number of student

2

7

8

30

12

1

Find modal class and also give class mark of the modal class .

Solution:  We construct the table :

Monthly pocket money (Rs.)

Class marks

No. of student

0 – 50

50 – 100

100 – 150

150 – 200

200 – 250

250 – 300

25

75

125

175

225

275

2

7

8

30

12

1

    Here the maximum class frequency is 30 . So, the modal class is 150 – 200 .      

   ,  ,    ,   ,   

Mode

    

 Therefore, the mode is 177.5

Question :  The distribution below gives the weights of 30 students of a class .Find the median weight of the students .                                                                                                                  

Weight (in kg)

40 – 45

45 – 50

50 – 55

55 – 60

60 – 65

65 – 70

70 – 75

Number of students

2

3

8

6

6

3

2

 Solution:   We construct the table :

Weight (in kg)

Frequency

Cumulative frequency

40 – 45

45 – 50

50 – 55

55 – 60

60 – 65

65 – 70

70 – 75

           2

           3

           8

           6

           6

           3

           2

                  2

                  5

                13

                19

                25

                28

                30

Now ,    ,    . This observation lies in the class 55 – 60 .  

Here ,   ,    ,   and  

Median

 

Therefore, the weight of the students is 56.67 .  

Question :  If the mode of the following distribution is 57.5 , then find the value of   :

Class interval

30 – 40

40 – 50

50 – 60

60 – 70

70 – 80

80 – 90

90 – 100

Frequency

     6

    10

    16

     

    10

     5

     2

Solution:   We construct the table :

Class interval

30 – 40

40 – 50

50 – 60

60 – 70

70 – 80

80 – 90

90 – 100

Frequency

      6

     10

     16

      

     10

      5

     2

 Here , the maximum class frequency is 16  and the modal class is  50 – 60 .

    ,     ,    ,   

Mode  

Question :  Determine the missing frequency , from the following data , when mode is 67 .

Class interval

  40 – 50

    50 – 60

    60 – 70

    70 – 80

   80 – 90

Frequency

      5

         

      15

       12

     7

Solution:  We construct the distribution frequency table of the given data as follows :

              Class interval

    Frequency

                  40 – 50

                  50 – 60

                  60 – 70

                  70 – 80

                  80 – 90

                 5

                  

                15

                12

                  7

 Here ,   ,     ,   and   

Using mode formula :

Mode

   

     

  

Therefore, the value of x is 13.7  .

Question :  The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality . Find the median , mean and mode of the data and compare them .

Monthly consumption (in units)

Number of consumers

65 – 85

85 – 105

105 – 125

125 – 145

145 – 165

165 – 185

185 – 205

4

5

13

20

14

8

4

Solution : We the frequency distribution table :

Class interval

 

 

  

 C.F.

 

65 – 85

75

 – 60

4

4

 – 240

85 – 105

95

 – 40

5

9

 – 200

105 – 125

115

 – 20

13

22

 – 260

125 – 145

135

0

20

42

0

145 – 165

155

20

14

56

280

165 – 185

175

40

8

64

320

185 – 205

195

60

4

68

240  

Total

 

 

68

 

 140

Here,

This observation lies in the class 125 – 145 . Then,

 

Using the formula ,

Median

 units

Using assumed mean method ,

Here,

   Mean

 units

Using the formula ,

Here,

 Mode

 units

The three measures are approximately the same in this case .