• Dispur,Guwahati,Assam 781005
  • mylearnedu@gmail.com

1. Real Numbers

SEBA Class 10 Maths Chapter 1 Real Numbers

Chapter 1. Real Numbers

 Class 10 Maths Chapter 1. Real Numbers Multiple Choice Questions and Solutions :

Question : Find the correct answer :  is   [SEBA 2015]

(a) an integer   (b) a rational number   (c) a prime number  (d) an irrational number

Solution : (d) an irrational number .  [ Since ,   is an irrational number. ]

Question :  In the following real numbers, which one is non-terminating repeating decimal expansion ?   [ SEBA 2015]

(a)         (b)            (c)            (d)   

Solution:   (c)     [  is non-terminating repeating decimal expansion . ]

Question : If LCM (91,26) = 182 , then HCF(91,26) =    [SEBA 2016]

(a) 13   (b) 26   (c) 7     (d)  9

Solution : (a) 13  

[ We have,   ]             

Question : According to Euclid’s Division lemma, given two positive integers a and b , there exist unique integers q and  r  such that -    [ SEBA 2016] 

(a)                                      

(b)   

(c)                                      

(d) 

Solution:    (c)         

Question : The smallest number by which   should be multiplied so as to get rational number is : [ SEBA 2017]

(a)        (b)           (c)           (d) 3

Solution:    (c)                 

[ We have,   ] 

Question : The number of decimal places after which the decimal expansion of the rational number   will terminate is :    [SEBA 2017]

(a)  3      (b)  4       (c)  1        (d) 5

Solution:  (b)  4                               

[ We have, ]

Question : Which one of the following is a rational number ?  [SEBA 2018]

(a)           (b)         (c)           (d) 

Solution:  (d) 

[  We have,    ]

Question : The decimal expansion of the rational number will terminate after

(A) one decimal place  (B) two decimal places 

(C) three decimal places  (D) more than three decimal places

Solution: (B) two decimal places .

[ We have,   ]

Question : The product of a non-zero rational and an irrational number is :

(A) always irrational     (B) always rational   (C) rational or irrational   (D) one

Solution: (A) always irrational .

[Example :  is a irrational; number.]   

Question : If the HCF of 65 and 117 is expressible in the form  , then the value of  is :

(A)  4          (B)  2           (C)  1         (D)  3

Solution:  (B) 2

[ We have, 65 = 5 × 13  and 117 = 3 × 3 × 13

HCF (70 , 125) = 13

A/Q ,

 

   ]

Question : The largest number which divides 70 and 125 , leaving remainders 5 and 8 respectively , is :

(A) 13               (B) 65           (C) 875         (D) 1750

Solution:  (A) 13  .

[Since, 70 – 5 = 65 = 5 × 13 and 125 – 8 = 117 = 3 × 3 × 13

HCF (70 , 125) = 13 ]

Question : If two positive integers  and are written as  and are prime numbers, then HCF  is :

(A)                 (B)         (C)             (D)  

Solution:  (B)   .      

[Product of the smallest power of each common prime factor in the numbers .

Here,  and

      ]           

Question : If two positive integers  and  can be expressed as  and  are prime numbers, then HCF  is :

(a)                (b)         (c)             (d)   

Solution : (a)   

[ Product of the smallest power of each common prime factor in the numbers .

Here, and 

HCF  ]                              

Question : 120 can be expressed as a product of its prime factors as :  [CBSE 2020 basic]  

 (a)                 

(b)                  

(c)           

(d)                       

Solution :  (d)   

[  We have ,    ]

Question : The H.C.F of 8 , 9 , 25 is  :

(a) 8         (b) 9          (c) 25          (d) 1

Solution:  (d) 1    

[ We have ,     ;        ;    

 HCF (8 , 9 , 25) = 1   ]

Question : Which of the following is an irrational number ? [SEBA 2020]

 (a) 0.142857142857142857……………                                     

(b)           (c)  π           (d)  

Solution:  (c)  π   [ π is an irrational number .]                                                                                  

Question : Which of the following is not irrational ?

(a)                                                  

(b)  

(c)                                     

(d)     

Solution:  (c)    

[  We have, (c)  is not irrational ]                          

 Question : Which one of the following is a non-terminating repeating decimal ?  [SEBA 2019]

 (a)          (b)              (c)         (d) 

Solution:   (c)            

[ We have,  is a non-terminating repeating decimal. ]

Question : Given three statement  such as :

(i) The sum or difference of a rational and an irrational number is irrational .

(ii) The product and quotient of a non-zero rational and irrational number is irrational .

(iii) The product of the two numbers is not equal to the product of their HCF and LCM .

(iv) The LCM is equal to the product of the greatest power of each common prime factor in the numbers.

(a)  (i) , (ii) and (iii) are correct .                                             

(b)  (i) , (ii) and (iv) are correct .

(c) (ii) , (ii) and (iii) are not correct .                                      

(d) (ii) , (iii) and (iv) are correct .                                          

Solution:  (d) (ii) , (iii) and (iv) are correct .           

Question : The decimal expansion of the rational number will terminate after

(A) one decimal place  (B) two decimal places 

(C) three decimal places  (D) four decimal places

Solution:  (D) four decimal places .

[ We have, ]                                                           

Question :  Which number is not divisible by 11 ?

(a)  253       (b)  1771        (c)  286         (d)  91

Solution:  (d) 196  

 [ We have,  253 = 11×23  ;  1771 = 7 × 11 × 23 , 286 = 2 × 11 × 13  ;  91 = 7 × 13 ] 

Question : The largest number which divides 60 and 75 , leaving remainders 8 and 10 respectively,is

(a) 260         (b) 75        (c)  65         (d)  13

Solution:  (a) 260  

[ We have,  60 – 8= 52 =  2 × 2 × 13    ;   75 - 10 = 65 = 5 × 13

LCM (52 , 65) = 2 × 2 × 5 × 13 = 260    ]

Question : If LCM (91 , 26) = 182 , then HCF (91 , 26) is :[SEBA 2016]

(a)  13         (b)  26          (c)  7          (d)  9

Solution:  (a) 13

[ We have,     ]

Question : For some integers  , every even integer is of the form

(A)        (B)             (C)       (D) 

Solution: (C)    .

Question : The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is

(a) 840          (b) 2520           (c) 10            (d) 420

Solution:   (b)  2520                 

[ We have , LCM (1, 2 , 3 , 4 , ………., 10)

      ]

Question : When a number is divided by 7 , its remainder is always :

(a) greater than 7   

(b) at least 7      

(c) less than 7  

(d) at most 7

Solution:  (a) greater than 7    .

Question : If HCF (16,y) = 8 and LCM(16, y) = 48 , then the value of y is :

(a) 24          (b) 16            (c) 8           (d) 48

Solution:  (a) 24           

[ A/Q , HCF (16 ,y)  × LCM (16 , y) = 16 × y

⇒ 16 × y = 8 × 48

 

⇒ y = 8 × 3 = 24  ]

Question : Find the least number of 3 digits , that will gives us remainder of 9 when divided by 2 and 5 respectively .

(a) 121         (b) 141            (c) 110          (d)  109

Solution:  (d)  109  

 [ We have , 109 = 10 × 10 + 9 ]

Question : The decimal expansion of the rational number will terminate after :

(a) One decimal place                                        

(b)  Two decimal places

(c) Three decimal places                                    

(d) Four decimal places 

Solution:  (c) Three decimal places                                     

[ We have, ]

Question :  The ratio between the LCM and HCF of 5 , 15 , 20 is :

(a)   9 : 1          (b)   4 : 3          (c) 11 : 1        (d) 12 : 1

Solution:  (d) 12 : 1      

[ We have ,  5 = 1 × 5   ;    15 = 3 × 5   ;   20 = 

HCF (5 , 15 , 20) = 5    

LCM (5 , 15 , 20) = 

So,       ]  

Question :  HCF of 52× 42 and 35 × 65 is :

(a) 52 × 35             (b) 5 × 33                

(c) 65 × 32             (d) 7 × 13  

Solution:  (d) 7 × 13   

[ We have,  52 × 42 = 2 × 2 × 13 × 2 × 3 × 7 =   

and   35 × 65 = 5 × 7 × 5 × 13 = 52 × 7 × 13 

HCF ( 52 × 42 , 35 × 65) = 7 × 13   ]

Question : What type of decimal form    will have ?

(a)  Terminating                                                     

(b) Non-terminating repeating

(c)  Non-terminating non-repeating                 

(d) None

Solution:   (a) (ii) Non-terminating repeating  .   

[ The prime factorisation of the denominator is not of the form , where and  are non-negative integers.  ]

Question : The decimal expansion of the rational number  will terminate after :

(a)  one decimal place                                                           

(b) Two decimal places

(c) Three decimal places                                                      

(d) four decimal places .  

Solution: (c)  Three decimal places. 

[ We have, ]       

Question : If   is written in the form , where  are co-primes and  is of the form  , then values of and  are :

(a)  0 , 3         (b)  3 , 0         (c)  2 , 3          (d) 2 , 2

Solution :   (a)  0 , 3       

[ We have,   ]

Question :  Which of the following a rational number lying between  and   ?

(a)  2.110111101111110………………                              

(b) 1.515785515…………….

(c)                                                              

(d) 1.14287514……………

Solution :  (b) 1.515785515…………….  

[We have,  = 1.41421........    and  = 1.73205.......... 

So, 1.515785515…………….  is a rational number lying between  and  ]

Question : Which of the following rational numbers have terminating decimal ?

(a)            (b)             (c)            (d)  

Solution:  (d)  

[ Since, is a terminating decimal expansion . ]

Question : Given 36 , 72 and 120 are three number, then the HCF is ........... .                     .

(a)  10         (b) 15        (c) 18       (d)  12

Solution : (a)  (i) 12  .

  [ We have,   and      

]

Question : Given 29 and 53 are two number, then HCF (29 , 53) will be :

(a) 29 × 53                        

(b) 53                              

(c) 29                              

(d) 1

Solution :

Question : What is the LCM of 36 , 72 and 120 ?

(a) 620         (b) 720      (c) 360         (d) 260

Solution : (c) 360

  [ We have,   and  

  ]

Question : The ratio of the two number is 3 : 7 . If the HCF is 13 , then the number are :

(a)  29 , 91                          

(b)  39 , 72                         

(c)  39 , 92                    

(d)  29 , 82

Solution:  (c)  39 , 92   

[ let the two number are  and   .  

     and     

HCF  

   and   ]

Question : If the LCM of and 18 is 36 and the HCF of and 18 is 2 , then

(a) 2               (b) 3          (c) 4        (d) 1

Solution :   (c) 4 

[Here,  ,  

We have, 

 

 Filled in the blanks :

Question : The HCF of two number is 27 and their LCM is 162 , if one of the number is 54 , then the other number is .........................................                               .

Solution:  81     

[  The other number   ]

Question : If product of two numbers is 2366 and their LCM is 26 , then their HCF is ...............................            

Solution:  91             

[   We have,       ]

Question : The HCF and LCM of two numbers are 33 and 264 respectively , When the first number is completely divided by 2 and the quotient is 33 , then other number is......................................                                 .

Solution: 132   

[ We have ,

Other number     ]

Question : If the prime factorisation of a natural number is  , then number is.........................                         

Solution: 8232  

[ We have ,    ]

Question :    is   ( irrational / a rational number ) .

Solution:  a rational number .

[ We have ,    is a rational ]

Question : If   is expressed in the form  , then values of  is ..................................                              .

Solution:   4                

[ We have ,     ]

Answers following the question :

Q1. Find the LCM and HCF of 6 and 20 by prime factorization method .

Solution:  We have,     and   

      and     .

Q2. Express the number 0.104 in the form of rational number  .

Solution:  We have , 

   is the form of rational number  .

Q3. Given that HCF(306 , 657) = 9 , find LCM (306 , 657) .

Solution:  We have ,  

 

Q4. The  LCM of two number is 182 and their HCF is 13 . If one of the numbers is 26 , find the other . [CBSE 2020 standard]

Solution:   We have , LCM × HCF  one number × other number

The other number  

Q5. Find HCF of 1001 and 385 .

Solution:  We have,   

and   

Q6. Find the LCM of the two digit smallest prime and smallest odd composite natural number .

Solution: The  two digit smallest prime number is 11 and the smallest odd composite number is 15 .

 So,    

Q7. Decompose 32760 into prime factors .

Solution:  We have , 

            

Q8. What is the HCF of smallest prime number and the smallest composite number ? [CBSE 2018]

 Solution:  The smallest prime number is 2 and the smallest composite number is 4 .

  So,

Q9. Find a rational number between  and

Solution:  We have ,    and   

Thus , the rational number between  and  is   .

Q10. Find one irrational number between   and    .

Solution:   We have ,       and   

Thus , the one irrational number between   and  is 1.21021002100021………….. .  

Q11. The decimal expansion of the rational number  will terminate after how many places of decimals ?

Solution:  We have ,

 .

The decimal expansion of the rational number  will terminate after 4 places of decimals .

Q12. After how many decimal places will the rational number  terminate ?

Solution:  We have,

The decimal expansion of the rational number  will terminate after 4 places of decimals .

Q13. If HCF(336 , 54) = 6 , find LCM (336 , 54) .  [CBSE 2019]

Solution:  We have , 

Class 10 Real Numbers SECTION = B

Q1. Find the LCM and HCF of 120 and 144 by using Fundamental theorem of Arithmetic . [CBSE2012]

Solution: We have ,

and   

 

Q2. Check whether  can end with the digit 0 for any natural number  .

Solution: We have,  

   

Prime factors of  are only 2 and 3 .

So, the prime factors of does not contain , where  and  are positive integers .

Therefore,  does not end with the digit 0 .

Q3. Prove that  is irrational .    [SEBA 2016]

Solution:  let us assume , to the contrary  that   is rational .

We can find co-prime and  ( ) such that 

    

Since, 2 , and  are integers ,is rational and so, is rational .

But this contradicts the fact that  is irrational . So , is irrational .

Q4. Find the largest number that will divides 398 , 436 and 542 leaving remainders 7 , 11 and 15 respectively .

Solution:  We have ,

398 - 7 = 391 = 17 × 23

436 - 11 = 425 = 5 × 5 × 17

542 - 15 = 527 = 17 × 31  

HCF(391 , 425 , 527) = 17

Therefore, 17 is the largest number that will divide given numbers.            

Q5. Express 5050 as product of its prime factors . Is it unique ?

Solution:  We have,

          

It is not unique .

Q6. Check whether  can end with the digit 0 for any natural number  .

Solution:  Since,  

 

Prime factors of  are only 2 and 3 .

So, the prime factors of does not contain , where  and  are positive integers .

Therefore,  does not end with the digit 0 .

Q7. Find the HCF and LCM of 12 , 15 and 21 ,using  the prime factorization method .

Solution:  We have ,

 

   and         

Q8. Prove that   is irrational .

Solution:  let us assume , to the contrary  that   is rational .

 We can find co-prime and  ( ) such that,   

  

  

Since and  are integers ,  is rational and so, is rational .

But this contradicts the fact that  is irrational . So,  is irrational .

Q9. Use Euclid’s division algorithm to find the HCF of 867 and 255 .

Solution:  We have , 867 > 255

We apply the division lemma ,  

 

 

Q10. Use Euclid’s division algorithm to find the HCF of 4052 and 12576 .

Solution:  We have ,  12576 > 4052

We apply the division lemma ,  

 

 

 

  

 

 

Thus , the HCF of 12576 and 4052 is 4 .

Q11. Using Euclid’s Algorithm , find the HCF of 2048 and 960 .  [CBSE 2019]

Solution:  We have ,  2048 > 960

 We apply the division lemma ,    

 

 

 

Thus , the HCF of 2048 and 960 is  64 .

Q12.  An army contingent of 616 members is to march behind an army band of 32 members in a parade . The two groups are to march in the same number of columns . What is the maximum number of columns in which they can march ?

Solution:  The maximum number of column  HCF (616 , 32)

Using Euclid’s  division algorithm  , we have

        

The HCF (616 , 32) is 8 .

Thus , the maximum number of column is  8 .

Q13. Write the smallest number which is divisible by both 306 and 657 . [CBSE 2019]

Solution: We have , 306 = 2 × 3 × 3 × 17  

and  657 = 3 × 3 × 73  

HCF of 306 and 657 is 9 .

Class 10 Real Numbers SECTION = C

Q1. Find LCM and HCF of 6 , 72 and 120 by prime factorization method . Is HCF × LCM of three numbers equal to the product of the three numbers ?

Solution: We have,  

 

LCM (6 , 72 , 120)  

HCF (6 , 72 , 120)  

LCM (6 , 72 , 120 ) × HCF (6 , 72 , 120 )

So, the product of three numbers is not equal to the product of their HCF and LCM .

Q2. Find the LCM and HCF of 144 , 112 and 418 by prime factorization .

Solution :  We have, 

 

 

LCM (144 , 112 , 418)

HCF (144 , 112 , 418)

Q3. Prove that  is irrational .

Solution: let us assume , to the contrary that  is rational .

So, we can find integers and  () such that ,     [    and  are co-prime]

 

 

Therefore ,  is divisible by 3 and so  is also divisible by 3 .

let ,  , for some integer  .

 

 

From  and  , we get   

 

Therefore ,  is divisible by 3 and so  is also divisible by 3 .

So,  and  have at least 3 as a common factor .

But this contradicts the fact that and  are co-prime . So,   is irrational .

Q4. Prove that  is an irrational .

Solution:  let us assume , to the contrary , that   is rational .

 We can find co-prime and  ( ) such that  

 

   

 

   –

  –     

  

Since , 2 , and  are integers , is rational and so, is rational . But this contradicts the fact that  is irrational . So , is irrational .

Q5. Given that is an irrational , prove that is an irrational number . [CBSE 2018]

Solution:  let us assume , to the contrary  that   is rational .

We can find co-prime and  ( ) such that 

    

 

  

Since 3 , and  are integers ,  is rational and so, is rational .

Given  is irrational . So,  is irrational .

Q6. Prove that  is irrational  and hence show that  is also irrational .

Solution: let us assume , to the contrary that  is rational .

So, we can find integers and  () such that   [            and  are co-prime]

 

 

  

Therefore ,  is divisible by 5 and so  is also divisible by 5 .

let ,  , for some integer  .

 

From  and  , we get  

 

Therefore ,  is divisible by 5 and so  is also divisible by 5 .

 So,  and  have at least 5 as a common factor .

But this contradicts the fact that and  are co-prime . So,   is irrational .

Since  is an irrational number . Therefore , is also irrational  .

Q7. Find HCF and LCM of 404 and 96 and verify that HCF × LCM  Product of the two given numbers . [SEBA2019 , CBSE 2018]

Solution:  We have, and  

HCF (96 , 404)   

LCM (96 , 404)  

HCF (96 , 404) × LCM (96 , 404)

        Verified.

Q8. Rajesh has two vessels containing 720 ml and 405 ml of milk respectively . Milk from these containers is poured into glasses of equal capacity to their brim . Find the minimum number of glasses that can be filled .

Solution:  We have ,

 

 

Therefore, the number of glasses is 45 .

Q9. Example : Find the HCF of 455 and 42 , use Euclid’s division algorithm .

Solution :  We have ,    

Apply Euclid’s division algorithm , 

           

       

                

Therefore , the HCF of 455 and 42 is 7 .

Q10. Find the HCF of 455 and 42 , Use Euclid’s division algorithm .

 Solution :  We have , 455 > 42

 Apply Euclid’s division algorithm ,    

 455 = 42 × 10 + 35      

  42 = 35 × 1 + 7     

  35 = 7 × 5 + 0              

Therefore , the HCF of 455 and 42 is 7 .

Q11. Prove that  is irrational .

Solution:  let us assume , to the contrary  that   is rational .

 We can find co-prime and  ( ) such that ,  

   

 

   

   

Since, 2 , and  are integers ,  is rational and so, is rational .

But this contradicts the fact that  is irrational . So,  is irrational .

Q12. Use Euclid’s division lemma to show that the square of any positive integer is either of the form or  for some integer .

Solution: let,  be any positive integers and  .

We apply the Euclid’s division algorithm ,

  ,  

 ,     then  or  .

If    then    ,

 where  

If    then   ,

     ,  where  

If     then   ,

 

     ,  where  

Thus, the square of any positive integer is either of the form  or  for some integer .

Q13. Show that any positive odd integer is of the form  or or,where  is some integer.

Solution:  let ,  be any positive odd integers and .

Using Euclid’s algorithm ,

 ,     ,

 ,     

So,      0 , 1 , 2 , 3 , 4 or 5 .

If   then  

 is an even numbers .

If  then  is an odd numbers .

If  then  is an even numbers .

If  then  is an odd numbers .

If  then  is an even numbers .

If  then   is an odd numbers .

Therefore, any positive odd integer is of the form  ,   or   .