• Dispur,Guwahati,Assam 781005
  • mylearnedu@gmail.com

3. Pair of Linear Equations in Two Variables

SEBA Class 10 Maths Chapter 3. Pair of Linear Equations in Two Variables

 Chapter 3. Pair of Linear Equations in Two Variables                                          

 Class 10 Maths Chapter 3. Pair of Linear Equations in Two Variables Multiple choice Questions and Answers

Question : Consider the following pairs of linear equations : [SEBA 2020]

(i)       ;      

(ii)      ;    

Choose the correct alternative :

(a) The pair in (i) has no solution, whereas the pair in (ii) has unique solution .

(b) The pair in (i) has infinitely many solutions, whereas the pair in (ii) has no solution .

(c) The pairs in (i) and (ii) have no solutions .

(d) The pair in (i) has no solution, whereas the pair in (ii) has infinitely many solutions .

Solution :  (d) The pair in (i) has no solution, whereas the pair in (ii) has infinitely many solutions .

[ We have, i.e.,   

agian ,    , and   i.e.,  ]

Question :  One equation of a pair of dependent linear equations is  ,the second equation can be :     

(a)                    

(b)    

(c)              

(d)           

Solution :   (d)   

[   We have,

]

Question:  If the pair of linear equations  and  has infinitely many solutions , then the values of and are :

        (a) 3 and 5           (b) 4 and 8             (c) 4 and 7             (d) 4 and 5

Solution :    (b) 4 and 8       

[ We have,

So,

and  

  ]

Question :  If the point   lies on the lines represented by both the equations and   , then the lines is :

(a)  intersecting                     

(b) coincident                   

(c)  Parallel                   

(d) None of these

Solution:  (a)  intersecting   .                  

[ We have , i.e.,   ]

Question :  The value of  for which the pair of linear equations  and represents parallel lines is :

(a)         (b)        (c)       (d)  

Solution:   (a)      .                       

[ We have , 

So, 

         ]

Question : Consider the following pairs of linear equations :[SEBA 2019]

(i)        , 

(ii)       ,   

Choose the correct alternative .

(a) The pairs in (i) and (ii) are consistent .

(b) The pairs in (i) and (ii) are inconsistent .

(c) The pair in (i) is inconsistent, whereas the pair in (ii) is consistent .

(d) The pair in (i) is consistent, whereas the pair in (ii) is inconsistent .

Solution:  (d) The pair in (i) is consistent, whereas the pair in (ii) is inconsistent .

[ We have ,     and   ]

Question : If the lines and  are coincident , then the value of  is :

(a)           (b)           (c)  – 11       (d)  – 7 

Solution:  (a)                   

[ We have ,  

  

So,  

  ]

Question : If  ,  is the solution of the equations and  , then the values of  and  are respectively :

(a) 6 , – 1     (b) 2 , 3       (c) 4 , 1     (d) 

Solution:   (c)  4 , 1              

[ Here ,      and   

We have ,  

 

and 

 

    from

  

From  , we get        ]

Question :  A pair of linear equations  ;    is said to be inconsistent, if

(a)           

(b)            

(c)               

(d)  

Solution:   (a)  

Question :  If the pair of linear equations  and  has infinitely many solutions , then the value of  is :

 (a)  3        (b)  4          (c)  5         (d)  6

Solution : (d) 6           

 [ We have, 

 

     ]

Question : If the lines  and  represent a pair of coincident lines, then  is :     

 (a) 4.5         (b) 5.6        (c) 12          (d) 9

Solution :  (c) 12  

[ We have,  

So,      and 

]            

Question : The graph of  is a line parallel to the - 

(a)  – axis              

(b)   – axis               

(c) both  – axis and   – axis            

(d) none of these

Solution:   (b)  – axis       .

Question : The pair of linear equations  and   is  :  [CBSE 2020 standard]

(a) consistent                                                               

(b) inconsistent

(c) consistent with one solution                               

(d) Consistent with many solutions

Solution:  (b) inconsistent .

[ We have ,  

     

 

  and    

 So,  

 i.e.,

Question : The graph of  is a line :

(a) parallel to  – axis                             

(b) perpendicular to  – axis

(c) parallel to  – axis                           

(d) passing through the origin .

Solution:   (d) passing through the origin .

Question : The lines representing the linear equations   and   are :

(a) intersect at a point                                

(b)  parallel  

(c)  coincident                                        

(d) intersect at exactly two points .           

Solution:   (b)  parallel  .

[ We have ,     i.e.,    ]

Question : The pair of equations  and   graphically represents lines which are :

(a) Coincident                                                        

(b) parallel 

 (c) intersecting at (3,4)                                         

(d) intersecting at (4,3)

Solution:  (d) intersecting at (4 , 3) .

Question :  If  pair of linear equations is consistent , then the lines represented by them are :[CBSE 2020 (Basic)]

(a) always coincident                                         

(b) parallel 

(c) always intersecting                                       

(d) intersecting or coincident.

Solution:  (d) intersecting or coincident.

Question : Which of the following pair of linear equations is intersect at a point ?

(a)    ,                      

(b)   , 

(c)   ,                  

(d)    , 

Solution:  (d)    ,     .

[ We have, 

So, the pair of linear equations is intersect at a point .  ] 

Question :  Which of the following pair of linear equation has no solution ?

(a)   ;                      

(b)   ;     

 (c)   ;                            

(d)    ;

Solution :  (a)  

 [ We have , 

   

     ]

Class 10 Pair of Linear Equations in Two Variables  Fill in the blanks

Q1. If in the equation  , the value of  is 6, then the value of  will be   .

Solution:   – 2       

[ We have,  

     ]

Q2. If the line are parallel , then the pair of the pair of equation is   . [ consistent / inconsistent / dependent (consistent)]

Solution:  inconsistent    .

Q3. The value of  for which equationsand  has a no solution is  .

Solution:    6      

[ We know that, 

  

So,   

  ]

Q4. The solution of the pair of linear equations  and are   and   respectively.

Solution:  2  and   – 3  

[  We have,

and     

 {from (i)}

 

Putting  in equation  , we get      ]

Q5. If  and  is a solution of a pair of equations and  , then the value of  and  are  and   respectively.

Solution:  5  and 15  

[ Given ,  and  

So,      

and 

    ]

Q6. If a pair of linear equations  and  is dependent and consistent , then the situations can arise   .

      /     /        

Solution:      .

Q7.  10 students of class X took part in a Mathematics quiz . If the number of girls is 4 more than the number of boys , then the number of boys and girls who took part in the quiz are   and   .

Solution:   3  and  7  .

[ let  and  be number of girls an boys respectively .

A/Q ,    

And      

     From

 

From  , we get 

   ] 

Class 10 Maths Chapter 3 .Pair of Linear Equations in Two Variables Answer following the question :

Q1. Find the value of  for which the given pair of linear equations has infinite many solutions :   ; 

Solution:  We have ,     and    

 

From  part and  part  , we get

       

Q2. On comparing the ratios    ,    and    , find out whether the lines representing the pairs of linear equations intersect at a point , are parallel or coincident :

      ;     

Solution:  We have ,     and    

 Here ,   ,    ,  ,  ,  ,         

    ,    and                  

Thus, the pairs of linear equations are parallel .

Q3. Find the value of  so that the point ,lie on the line represented by  .

Solution:  Here ,    ,  

We have ,  

Q4. Find the number of solutions of the following pair of linear equations :  [CBSE 2009]

       and  

Solution:  We have ,        and    

 Here ,     ,    ,   ,    ,   ,   

    ,    and                  

Thus, the pairs of linear equations are infinitely many solutions .

Q5. Write whether the following pair of linear equations is consistent or inconsistent :

    and     

Solution:   We have ,     ; 

       

     

  

Here ,    ,    ,  c1=6  ,   ,  ,   

       ,            

Thus, the pairs of linear equations is consistent .

Q6. Solve for  and   ( Using elimination method) :

     ;    

Solution:  We have , 

   

and 

 

From  we get ,

Q7. Which of the following pairs of linear equations has unique solution , no solution , or infinitely many solutions ?

    ;  

Solution:  We have,    and  

Here ,   ,   ,    ,   ,   ,  

       ,       and             

Thus, the pairs of linear equations has infinitely many solutions .

Q8. For what value of  does the pair of equations given below has a unique solution ?

   ;  

Solution:  We have ,    and

Here ,   ,   ,  ,   ,   ,  

     

 

 

      

Therefore, for all values of  , except    , the given pair of equations will have a unique solution . 

Class 10 Pair of Linear Equations in Two Variables 2 Marks Quesions and Answers :

SECTION = B

Q1. Five years ago, Nuri was thrice as old as sonu . Ten years later, Nuri will be twice as old as Sonu . How old are Nuri and Sonu ?

Solution:  let  and  be the age of Sonu and Nuri respectively .

Five years ago , the age of Sonu and Nuri will be  and  years respectively .

And  Ten years later , the age of Sonu and Nuri will be  and  years respectively .

 A/Q , 

 

   

  and         

    

      [ From  ]  

  

    

From  we get ,  

Therefore , 20 years and 50 years are the age of Sonu and Nuri respectively .

Q2. Solve :      ; andhence find the value of  for which  .

Solution:  We have , 

 

And   

From  we get  

Q3. In a   ,  . Find the three angles .

Solution:  Given,   

 and   

 

      

  In  , we have   

  

  

  

      

  ,    ,  

Q4. The difference between two numbers is 26 and one number is three times the other . Find them.

Solution:  let  and  be the two number .

 A/Q ,      

  

 And  

    [ From  ] 

 

    

From  we get  ,  

 

Therefore , the two numbers are  39 and 13 respectively .

Q5. Half the perimeter of a rectangular garden, whose length is 4 m more than its width, is 36 m . Find the dimensions of the garden .  [SEBA 2019]

Solution:   :  let  and   (in metres) are the length and width of the rectangular garden respectively .

A/Q ,   

 

And   

   [ From  ]

  

From  we get  ,

 

Therefore,  20 m and  16 m are the length and width of the rectangular garden respectively .

Q6. For what value of  will the following pair of linear equations has infinitely many solutions : ;  

Solution:  We have ,    ;  

Here ,    ,   ,    ,    ,   ,               

         

 

From 1st part and 2nd  part , we get

  

         

From 2nd  part and 3rd part , we get

  

 

 ,   

Therefore , the value of  is 6  .

Q7. If the sum of two positive numbers is 44 and one number is three times the other number, then find the numbers.

Solution :  Let  and   be the first and second numbers respectively .

 AQ ,   

 

 and

 

Putting  in equation  , we get 

Therefore, the two positive number are 33 and 11 respectively .

Q8. Solve  for x and y :     ;      [CBSE 2011]

Solution:  We have ,      

and      

 

 

 

 

  

  

Therefore, the value of  and  are 3 and 2 respectively .

Q9. Solve the following pair of equations by substitution method :      ; 

Solution:  We have ,  

  

and 

       

Putting     in equation   we get ,   

 

            

Therefore , the solution are  and

Q10. Use elimination method to find all possible solution of the following pair of linear equations : ;  

Solution:  We have , 

 

    

 and     

 

  , which is a false statement .

Therefore , the pair of linear equations has no solution . 

Q11. Given the linear equation  , write another linear equation in these two variables such that the geometrical representation of the pair so formed is : (i) intersecting lines  (ii) parallel lines

Solution:   Given the linear equation is  

(i) For intersecting lines ,   

Then, the another linear equation is  .

(ii)  For parallel lines ,  

Then , the linear equation is  .

Q12. Graphically , find whether the following pair of equations has no solution, unique solution or infinitely many solutions :    ;     

Solution:  We have ,   

 and

 

         

 

Equation  and  are same . Hence , the lines represented by equation  and  are coincident .

Therefore , equation  and  have infinitely many solutions.

Q13. Solve x and y :     ; 

Solution:  We have ,

     

and   

 

 

 

 

 

 

 

Therefore, the value of   and  are 2  and 1  respectively .  

Q14. 5 pencils and 7 pens together cost Rs. 50 , whereas 7 pencils and 5 pens together cost Rs. 46 .Find the cost of one pencil and that of one pen .   [SEBA 2020]

Solution:  let  and  be the cost of one pencil and one pen respectively .

A/Q , 

  

 

From  we get ,  

 

 

Therefore , the cost of one pencil and one pen are Rs. 3 and Rs. 5 respectively .

Class 10 Pair of Linear Equations in Two Variables 3 marks questions and Answers 

SECTION = C

Q1.  Solve the pair of equations :    [CBSE 2020 standard]

         ;        

Solution:   We have,     

  13  

 

and                              

  

let,      and      

                

 

 

 

Putting  in equation  , we have 

  

       and  

             

Therefore, the solutions are :     and  

Q2. Solve the following pairs of equations by reducing them to a pair of linear equations :

           ;           

 Solution:     We have , 

           ;            

let ,         and        

 

and    

   

From   we get ,   

 

   

  

 

and     

 

   

Therefore, the value of  and  are 4 and 9 respectively .

Q3. Solve for  and    :

       ;   

Solution:  We have,

 

 

 

  

  and  

 

 

 

 

  

 

 

From  we get ,   

 

 

 

 

   and     .    

Q4. Solve the following pairs of equations :  

       ;       ,   

Solution :   Let    

             

and    

 

 

Putting    in equation  , we get

   

 

    

   

Hence,   and   are the required solution of the given pair of equations .  

Q5. A fraction becomes  when 1 is subtracted from the numerator and it becomes   when 8 is a added to its denominator . Find the fraction .  [CBSE 2020]

Solution :  Let  and  be the numerator and denominator of the fraction respectively .

So, the fraction is     .

 A/Q,  

 

  

 and     

 

  

 

 

Putting  in equation  , we get    

 

 

 

Therefore, the fraction is    .

Q6. A fraction becomes   , if 2 is added to both the numerator and the denominator . If 3 is added to both the numerator and denominator it becomes  . Find the fraction . [ SEBA 2016 ,20]

Solution :  let,  and  are the numerator and the denominator of the fraction respectively .

 Therefore, the fraction is   .

  A/Q ,     

 

    

 

 

and       

 

 

 

Putting   in equation  , we get

  

 

 

 

     

 Required the fraction is    .

Q7. Solve for  and   :  [CBSE 2004 , 07C , 08]

 

  

Solution:  We have ,

  

  and  

 

 

   

   

  Putting  in equation  , we have

  

 

 

  

Therefore, the solutions are  and      .

 Class 10 Pair of Linear Equations in Two Variables 4 marks Questions and Answers

SECTION = D

Q1. The sum of the digits of a two-digit number is 9 . Also, nine times this number is twice the number  obtained by reversing  the order of the digits . Find the number .

Solution:  Let  and  be the ten’s and the unit’s digits of the number respectively.

Therefore,  the first number is and when the digits are reversed , then the number is  .

 A/Q, 

And  

Putting  in equation , we get   

Thus , the number  .

Q2. Solve the following  pairs of equations by reducing them to a pair of linear equations :       ;           [SEBA 2017 , 19]

Solution:  Let       and

We have,        

and   

   

Putting in equation  we get ,   

  

Therefore,     

         

and         

      

Q3. Solve the following  pairs of equations by reducing them to a pair of linear equations :

         ;       

Solution :     Let     and      

 We have,      

 

and    

 

   

 

  

Putting the value of  in equation  , we get

 

Therefore,     

and         

Q4. The taxi charges in a city consist of a fixed charge together with the charge for the distance covered . For a distance of 10 km , the charge paid is Rs. 105 and for a journey of 15 km, the charge paid is Rs. 155 . What are the fixed charges and the charge per km ? How much does a person have to pay for travelling a distance of 25 km ?

Solution:  let,  and  be the fixed charge and the charge per km respectively  .

 A/Q, 

and 

 

  

     

Putting  in equation  we get

         

       

 Therefore, a person have to pay for travelling a distance of 25 km Rs. (  )  Rs.(  )  Rs.(  )    Rs.  

 Class 10 Pair of Linear Equations in Two Variables 5 marks Questions and Answers

  SECTION = E

Q1. It can take 12 hours to fill a swimming pool using two pipes . If the pipe of largest diameter is used for 4 hours and the pipe of smallest diameter for 9 hours, only half the pool can be filled. How long would it take for each pipe to fill the pool separately ?

Solution:  let  and  (in hours) be the time taken by the pipe of larger diameter and smallest diameter  to fill the pool respectively .

In 1 hour,   the pipe of larger diameter fills is   .

and in 1 hour,   the pipe of smaller diameter fills is  .

A/Q,     and         

let         and    

   

 

and 

        [ From   ]

       

 Putting    in  , we get 

      

           

and      

So, the pipe of larger diameter alone can fill the pool  20 hours and the pipe of smaller diameter alone can fill the pool in 30 hours .

Q2.  Solve for  and  :         ;     

Solution:   We have ,

          and                                                       

Let,       and       

  

 

and

  [ From   ]

     

Putting    in  , we get 

  

       and   

     

 

     

 

 

   

  Hence ,  and  is the required solution of the given pair of equations .

Q3. Roohi travels 300 km to her home party by train and partly by bus . He takes 4 hours if she travels 60 km by train and the rest by the bus . If she  travels 100 km by train and the remaining by bus ,she takes 10 minutes longer . Find the speed of the train and the bus separately .

Solution:  let and  are the speed of the train and the bus respectively .

A/Q ,      

 

 

and    

 

 

Let,      and  

 

and   

 

 

 

Putting  the value of  in  , we get

 

       

   and   

             

Therefore, the speed of the train and the bus are 60 km/hrs  and 80 Km/hrs.

Q4.  A boat goes 30 km upstream and 44 km downstream in 10 hours . In 13 hours, it can go 40 km upstream and 55 km down-stream . Determine the speed of the stream and that of the boat in still water .

Solution :  let,  and  (in km/h) be the speed of the boat in still water and the speed of the stream .

Therefore, the speed of the boat downstream  km/h and  the speed of the boat upstream  Km/h

A/Q ,     10    and     13

let,         and          

   

 

and        

 

   

Putting the value of  in Eq.  we get ,

 ×  

      

Now,       

  

 and      

 

     

        

Hence, the speed of the boat in still water is 8 km/h and the speed of the stream is 3 km/h . 

Q6.  2 women and 5 men can together finish an embroidery work in 4 days, while 3 women and 6 men can finish it in 3 days . Find the time taken by 1 women alone to finish the work, and also that taken by 1 man alone .  [ SEBA 2016]

Solution:  let time taken by 1 woman  and 1 man to finish the work  and  days respectively .

A/Q ,   

and      

 

 let        and      

                   

and         

     

 and   

 

       

  Putting the value of  in equation   we get

    

          

 

   

   

               

 and             

Thus time taken by 1 woman  and 1 man to finish the work 18 days and 36 days respectively .

Q7. Draw the graphs of the equation  and   . Determine the coordinate  of the vertices of the triangle formed by these lines and the x-axis, and shaded the triangular region.

Solution:  We have ,

              

                                 

 

 – 1 

   0

  1

 

   0

  1

  2

 and     

       

       

     

   4

   0

   2

   

   0

   6

   3

 Plot the points A( – 1,0) , B(0,1) , C(1,2) ,D(4,0) , E(0,6) and F(2,3) on graph paper, and join the points to form the lines PQ and RS as shown in figure . We get the shaded triangle AFD with vertices A(– 1, 0)  , F(2,3) and D(4,0) . 

 

Q8. Solve the following pair of equation by reducing them to a pair of linear equations:

        ;   

Solution:   We have ,

                

and 

Let,         and 

              ;            

and   

 

  

     

 

       

     

 and   

 

 

   

 

   

Hence,   and   is the required solution of the given pair of equations .