• Dispur,Guwahati,Assam 781005
  • mylearnedu@gmail.com

4. Quadratic Equations

SEBA Class 10 Maths Chapter 4. Quadratic Equations

Chapter 4. Quadratic Equations 

 Class 10 Maths Chapter 4. Quadratic Equations Multiple Choice Questions and Solutions :

Question: The roots of a quadratic equation are and  , then the equation is :    [SEBA 2013]

 (a)      

(b)        

(c)      

(d)    

Solution:  (b)    

 [ The quadratic equation,   

     ]

Question :  A quadratic equation  has coincident roots (two equal roots) , then  [SEBA 2014]

(a)      

(b)     

(c)      

(d)  

Solution:  (d)    .

Question: Under what condition the roots of the quadratic equation  will be real and unequal ?   [ SEBA 2015]

(a)             

(b)            

(c)             

(d)  

Solution:  (c)    .  

Question :  One root of a quadratic equation is 2 and sum of the two roots is 0 , the equation is : [SEBA 2016]

 (a)              

(b)               

(c)              

(d)   

Solution: (b)               

[  Here,    

and   

The quadratic equation,  

  

        ]

Question: The roots of the quadratic equation  are :

(a)  3 ,                 

(b)  – 3  ,                

(c)  3  ,                    

(d) – 3 ,

Solution:  (c)  3  ,                    

[ We have ,  

 

 

So,    or 

Question: The nature of quadratic equation  are :

(a) two distinct real roots      

(b) two equal roots         

(c) no real roots      

(d) none of these . 

Solution: (b) two equal roots  

[ We have,  

Here,   ,      ,   

The discriminant  

Hence, the given quadratic equation has two equal real roots .       ]

Question: A quadratic equation  has two distinct real roots , then

(a)      

(b)       

(c)     

(d)

Solution:       (a)       .

Question : Under what condition will  be a quadratic equation ? [SEBA 2018]

(a)    (b) (c)  (d)

Solution : (d)

[If  is a quadratic equation , then and  are real numbers . ]

Question: The quadratic equation whose roots are 1 and  , then the equation is :

(a)     

(b)        

(c)       

(d)

Solution:  (d)  

[ The quadratic equation,

  ]

Question : The values of  for which the quadratic equation  has equal roots is :

(a) 0 only     (b) 4              (c) 8 only      (d) 0 , 8

Solution : (d) 0 , 8

[We have,

Here,  

 A/Q,  

 

  or    ]

Question:  Which of the following equations has 2 as a root ?  

(a)          

(b)           

(c)         

(d)   

Solution: (c)    

 [  Given ,  

         ]

Question:  A quadratic equation  has no  real roots , then

(a)     

(b)     

(c)      

(d)  

Solution: (b)       .

Question: Which of the following is not a quadratic equation ?

(a)                                  

(b)   

(c)                                

(d) 

Solution:   (d)   .

[We have, 

 

 

  ]

Question:  If   is a root of the equation , then the value of  is :

(a)  2        (b)   – 2       (c)            (d) 

Solution:  (a)  2   

[  Given ,     ;

  

   ]

Question: If the roots of  are reciprocal of each other, then

(a)               

(b)               

(c)              

(d) 

Solution: (d)      

[  let  and are two roots .

A/Q,

   ]

Question: If the roots of the equation  are in the ratio 3 : 2 , then  is :

 (a)  – 5      (b)  + 5         (c)            (d)  6

Solution: (c)    

[  let  and  are two roots . 

Given ,   

  

and    

  [from (i)]

 

   ]

Question: Which of the following equations has the sum of its roots as 3 ?

 (a)                                         

(b) 

(c)                                     

(d)   

Solution:  (b)   .   

[ We have,  the sum of roots   ]

Question: The discriminant of the quadratic equation  is    [CBSE2020 basic]

 (a)  12         (b) 84            (c)             (d)  – 12 

Solution:  (d)  – 12 

[ We have ,   ;

Here ,   ,    ,  

The discriminant   ]

Question: The value of  for which the quadratic equation  has equal roots , is

(a)  4         (b)            (c) – 4           (d) 0

Solution:  (b)                         

[ We have, 

 A/Q,    

     ] 

Question: Which one of the following is not a quadratic equation ?  [SEBA 2017]

(a)                             

(b)    

(c)                                  

(d)  

Solution:  (b)      .

[We have,

   is not a quadratic equation. ]

Question: The roots of the quadratic equation   is :

(a)  – 5 , – 1                

(b)  2 , 3                   

(c)  6 ,  – 1                  

(d)  – 2 , – 3   

Solution:  (a)  – 5 , – 1  

[  We have ,   

 

  ] 

Question :  Which of the following is a quadratic equation ?

 (a)                                    

(b)   

(c)                           

(d) 

Solution :  (d) 

 [ We have , 

is a quadratic equation ]

Question :  The product of roots of quadratic equation  is :

(a)          (ii)         (iii)       (iv) 

Solution : (c)     

[ The product of  roots  .  ]

Question :  If  is a example of quadratic equation ,then the roots of  given equation is :

(a)      (b)      (c)       (d) 

Solution :  (a)                   

 [ We have ,

 

 

 

So,   or

    ]

Question:  The nature of the quadratic equation  is :

(i)  coincident roots    (ii)  no real roots      

(iii)  two distinct roots   (iv)  two equal roots

Solution :   (d) (ii)  no real roots .

  [  Here,   ,    ,  

 The discriminant  

   

 So, there are no real roots for the given equation .  ] 

 Class 10 Quadratic Equations Fill in the blanks

Q1. If  – 5 is a root of the quadratic equation  , then the value of  is  .

Solution:   7           

[     Given,  

 

  

  

  

    ]    

Q2. If the quadratic equation has equal roots , then the value of  is    .

Solution:   

[  We have,   and let  be the root of quadratic equation.

A/Q, 

 

and  

 

 

  

      ]

Q3. If  and  are the roots of equation  and  , then is equal to  .

Solution:   – 24    

[ We have,   

A/Q,   

and      

 

  

From  , we get 

      ]

Q4. Given  and  are roots of quadratic equation, if  and , then the equation is  .

Solution:      .

[ Given ,  and  

The quadratic equation,  

 

     ]

Q5. If the quadratic equation  has two equal real roots , then  is  .

Solution:             

[ We have,    

  

 

     ]

Q6. The discriminant of the quadratic equation  is  .

Solution:  0        

[ We have,   

Here,  ,  ,

The discriminant    ]  

 Class 10 Quadratic Equations Answers following the question

Q1. If  is one root of the quadratic equation, then find the value of    .  [CBSE2018]

Solution:   Given ,  

 

 

Q2. Find the nature of roots of quadratic equation   [CBSE 2019]

Solution:  We have ,   

 Here,   ,      , 

 The discriminant 

  

Therefore, the given equation has no real roots .

Q3. Find the roots of the quadratic equation  

Solution:  We have , 

 

Q4. Check whether the equation is a quadratic equation : 

Solution:  We have,  

 

  is a quadratic equation.

Q5. Find the roots of the quadratic equation :  

Solution: We have,

 

  

  

    or  

Q6. If  is a solution of the quadratic equation  , find the value of  . [DELHI 2015]                                                                                                      

Solution:  Given,  

    We have ,  

    

  

    

Q7. If  and  are the roots of  , then find the value of  .  

Solution:  Since ,  and  are the roots of   .

    

and     

 Now,       

Class 10 Quadratic Equations 2 Marks Questions and Answers

Q1. Write the nature of roots of quadratic equation :   .

Solution:  We have ,  

 

  

    

 Here,   ,     ,

   The discriminant

Thus , the given equation has two distinct real roots .

Q2. Find the roots of the quadratic equation  using the quadratic formula .

Solution:  We have ,

Here ,    ,         ,   

Using the quadratic formula ,  

 

Thus, the roots are     and    .

Q3. Solve for   :    [CBSE 2014F , 2016]

Solution:  We have , 

 

  

 

      or  

Q4.  Check whether the equation is a quadratic equation : 

 Solution:   We have,  

 

 

It is of the form of   . So, the given equation is a quadratic equation .        

Q5. Solve the quadratic equation  for  .  [Delhi 2014]

Solution:   We have,

 

 

 

or   

Q6. If   and  are roots of the quadratic equation  , find the values of  and  .  [CBSE 2016]

Solution:  Since, and  are roots of  

   The sum of roots 

 

and

Product of roots  

   

Q7. Find the roots of the quadratic equation  .

Solution: We have,

 

 

    or  

 Therefore , the roots are   and    .

Q8. Find the roots of the quadratic equation

Solution:  We have ,

            or  

Thus, the roots of the quadratic equation are    and     .

Q9. Solve for    : 

Solution:  We have , 

Here ,    ,      ,

Using the quadratic formula , 

 

    or  

  or     

Q10. Find the roots the equation:        ;   

Solution:  We have,    

  

  

  

       ; 

Here,     ,      , 

Using the quadratic formula , 

 

 

Thus , the roots are   and     .

Q11. Find the value of  for the following quadratic equation , so that it has two equal roots :   .[SEBA 2020]

 Solution:  We have ,  

  

  Here ,     ,    ,    

      

 

 

 

 

   (impossible)    or   

Therefore, the value of  is   . 

Class 10 Quadratic Equations 3 Marks Questions and Answers     

SECTION = C

Q1. Solve the equation    , for   .  [Delhi 2014 , CBSE 2013]

Solution: We have,   

 

  

  

  

 

 

 

  

  

  

          or     

Thus , the value of  are  1 or  – 2  .

Q2. Solve for    :     

Solution:   We have ,   

 

     

or   

Therefore , the value of  are   and    .

Q3. Find that non-zero value of  , for which the quadratic equation  has equal roots. Hence find the roots of the equation. [Delhi2015 , CBSE2002C]

Solution:  We have,  

  Here ,    ,    ;    

     

  

  

  

  

  

  

      (impossible)   or    

   

 

  

 

 

            

or         

Thus, the equation of the roots are    and     . 

Q4. Find the roots of the equation  by the method of completing the square .

Solution:  We have,

  

  

  

  

 

    or 

Q5. Solve the following quadratic equation by applying the quadratic formula : 

Solution:  Here,      ,  ,  

Applying the quadratic formula,    

  

  

 

 

 

    or  

   or  

   or  

Q12. Find the nature of the roots of the following quadratic equations. If the real roots exist, find them :

Solution:  Here ,   ,      ,    

  

 Hence, the given quadratic equation has two equal real roots  and the roots are exist .

 Applying quadratic formula,

  or

Q8. Sum of the areas of two squares is 468   . If the difference of their perimeters is 24 m , find the sides of the two squares .  [SEBA 2016]

Solution:  let  and  are the  side of two square respectively.

 A/Q ,     

 

 

  

 and    

 

  

  

  

  

  

  

  

  

     (impossible)    

or   

Putting   in  , we get 

Therefore,  m and m are the  side of two square respectively.

Q9. Sum of the areas of two squares is 544   . If the difference of their perimeters is 32 m , find the sides of the two squares . [CBSE 2020]

Solution:  let   and   are the  side of two square respectively.

A/Q ,     

 

and      

 

 

 

 

 

 

 

 

         (impossible)   or  

Putting  in  , we get   

Therefore,  m and m are the  side of two square respectively.

Q10. Find two consecutive odd positive integers, sum of whose squares is 290 .

Solution:  let the two consecutive odd positive integers are  and  respectively .

A/Q ,       

         or  

Thus , the two consecutive odd integers are 11 and 13    . 

 Class 10 Quadratic Equations 4 Marks Questions and Answers                                                        

  SECTION = D

Q1.  Find in terms of  ,  and      ;   [CBSE 2016]

Solution:  We have ,    

 

 

  

 

 

 

 

 

  

         or   

         or     

Q2.If the roots of the equation  are equal, then prove that that 

Solution:  Given, the equation is  

 Here ,   ,    ;    

A/Q ,    

 

 

 

 

 

      Proved.

Q3. A train travels at a certain average speed for a distance of 54 km and then travels a distance of 63 km at an average speed of 6 km/h more than the first speed . If it takes 3 hours to complete the total journey , what is its first speed ? .

Solution:  let,  (in km/h) be the speed of the first train.

A/Q,     3  

 3

 

 

 

 

 

 

 

 

         or  

             

 Therefore , the speed of the first train is 36 km/h.

Q4. If the equation  has equal roots , show that  . [CBSE 2018]

 Solution:  Given, the equation is  

   ;       and    

         

  

  

 

 

      

       proved.

 Q5. Find the roots of the equations :    

Solution:  We have ,   

      

= 0

    

 

   or

    

Therefore , the roots of the equations are 1 and 2 .

Q6. The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.

Solution:   let,  be the shorter side of a rectangular field and the longer side will be (  m

 Therefore, the diagonal of a rectangular field is  m .

    A/Q ,    

 

 

 

        

 

      

 

          

and     (Impossible)

 Thus, the shorter side of a rectangular field is 90 m and the longer side is 

Q7. If the roots of the equation  are equal, prove that   

 Solution:  We have ,  

 Here,    ;     ;    

 A/Q ,       

 

 

 

    

  

  

       Proved.

Q8. A motor boat whose sped is 18 km/h in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot . Find the speed of the stream .  [CBSE 2018]

Solution:  let  (in km/h) be the speed of the stream .

So, the speed of the boat upstream km/h and  the speed of the boat downstream  km/h

 The time taken to go upstream  

and the time taken go downstream  

A/Q,

     (impossible)

or     

Thus, the speed of the stream is 6 km/h .