• Dispur,Guwahati,Assam 781005
  • mylearnedu@gmail.com

5. Arithmetic Progressions

Arithmetic Progressions

Chapter 5. Arithmetic Progressions

Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables  Multiple Choice Questions , Answer following the Questions , Fill in the blanks , 2 Marks Questions , 3 Marks Question , 4 Marks and Solutions :                                           

Class 10 Arithmetic Progressions Multiple Questions and Answers

SECTION = A

Q1. If the numbers  ,  and are in AP, then the value of  is

(a)   0     (b)   – 2   (c)   – 1   (d)   1

Solution :  (d)   1   

[ We have,  

      ] 

Q2. Which of the following is not an A.P. ?  [CBSE 2020 (standard)]

(a)                              

(b)   

(c)                                

(d)  

Solution :     (c)                               

[ (a) :     ;   

(b)  

 (c)        ;                            

(d)   ]

Q3. The first three terms of an AP respectively are  ,  and  ,then  equals :  [2014 Delhi]

(a) – 3     (b)  4       (c)  5       (d) 2                       

 Solution :    (d)   2  

 [ Since  ,  and  are three consecutive terms of an AP, then

 

 

     ] 

Q4. The next term of the A.P :    ,  ,  , …….. is :

  (a)       (b)        (c)         (d)

Solution :   (c)   

[ The AP. :     

 Here,  ,  

    term       ]

Q5.   term of  an AP : is :  [SEBA 2019]

 (a) 97       (b) 77        (c)  – 77      (d)   – 87   

 Solution :      (c)  – 77    

 [  Here,     ,   ,   

 We know that ,  

  ]

Q6.  The common difference of an A.P. in which  is

 (a)  7     (b)  8    (c)   5    (d)  6

Solution :  (d)  6        

[ We have,

 

 

     ]

Q7. If   and   of an A.P. , then  is :

 (a)  372      (b)  273       (c)  237       (d) 723

Solution :     (b)  273  

[ We know that ,    

 

 

     ]

Q8. The common difference of the A.P’s :  is : [ CBSE 2013]

 (a)          (b)          (c)           (d) 

Solution :    (d)     

[ Common difference       ]

Q9. The  term of  an AP’s :  0  ,  – 4 ,  – 8 ,  – 12 , …………….. is : [SEBA 2020]

 (a)  – 96       (b)   – 100     (c)  – 104     (d)  – 108  

Solution :      (b)   – 100                     

 [ Here ,  ,     ,  

  

   ]

Q10. The  term of the AP.   is :    [CBSE 2015 F]

 (a)  77        (b)  44       (c)  66      (d)   55

Solution :  (d)  55

 [ Here ,  ,    ,

  , 

     ] 

Class 10 Arithmetic Progressions  Fill in the blank :

Q1. The first three terms of an AP respectively are  ,  and  ,then  equal to   .

Solution :   5

[ We have,

 

  ]

Q2. The sum of first five multiples of 3 is   .

Solution :  45

[ List of numbers becomes : 3 , 6 , 9 , 12 , 15 . 

 Here ,

 

   ]

Q3. The next term of the A.P. : , , , ,   is  .

Solution :         .

[ The A.P. is :    ,  ,  ,    ;

Here, 

    term      ]

Q4. For the AP :   ,  ,  ,  , then  term is   .

Solution :         .

[ Here,      ,   

     ]

Q5.  If   ,   and   , then  is   .

Solution :      2           

[  We have,  

    ]

Q6. The sum of first  positive integers  .

Solution :     .

Q7. If the common difference of an AP is 5 , then  is  .

Solution :    20

 [ We have , 

   ]  

Class 10 Arithmetic Progressions Answer following the questions

Q1. If the  term of the A.P.    – 1 , 4 , 9 , 14 , ……….  is 129 , find the value of  .[ CBSE 2017 C]

Solution :    Here ,   ,  

 and 

 

 

 

 

Q2. Find the value of  so that   ,   ,  in A.P.     [ CBSE 2020 (basic)]

Solution :  We have,  

    

Q3. Find the  term of the A.P.  :   ,  ,, ,  .[CBSE 2020 (basic)]

Solution :    Here ,   ,     ,   

 

 .

Q4. Find the  term of the AP : 2 , 7 , 12 , …………

Solution:  Here ,   ,  , 

 We know that ,  

 

Q5. In an AP, given   and , then find .

Solution:   We know that ,  

  

Q6. Write  term of an A.P if its  term is  .

Solution:  Given ,    

   

Q7. Which term of the AP :  3 , 8 , 13 , 18 , ……………. , is 78 ?   [SEBA2015]

Solution : Here ,  ,   and  

 We know that , 

  

  

  

  

  

Q8. Find the sum of the first 100 positive integers .

 Solution :  We have ,

Q9. Find the sum of an AP’s :  2 , 7 , 12 , …………… , to 10 terms .

Solution :   Here ,  ,    and  

 

    

 Case Study Section = II

Case study based questions are compulsory . Attempt any four sub parts of each question .

Each subpart carries 1 marks.

Q1. Reena applied for a job and got selected . She has been offered the job with a starting monthly salary of Rs. 8000 , with an annual increment of Rs. 500 .

 

 Answer the question based upon this situation :

(a)  Which of following are A.P ?

(i)  7000 , 7400 , 8400 ,…………               

(ii)  8400 , 9600 , 10600 , ………                             

(iii)  8000 , 8500 , 8900, ………...               

(iv) 8500 , 9000, 9500 ,………..

(b) What would be her monthly salary for the fifth year ?

 (i)  8500       (ii)  9600       (iii) 10600      (iv) 10000

(c) If   ,   and   then  

  (i)          (ii)           (iii)        (iv)    

(d) The sum of the first 1000 positive integers is:

 (i)  50050   (ii) 50500     (iii)  5050     (iv) 500500

  Solution:  (a)   (iv) 8500 , 9000, 9500 ,…………………..

   (b) (iv) 10000 

    [ We have,

      ]

    (c)  (iii)           

     [   We have,   

      ]

     (d) (iv) 500500     

[ We have,     ]

Q3. In a school, student thought of planting trees in and around the school to reduce air pollution. It was decided that the number of trees, that each section of each class will plant, will be the same as the class, in which they are study, e.g., a section of class  will plant 1 tree, a section of class  will plant 2 trees and so on till class   . There are three sections of each class .                              

     

    Answer the question based upon this situation :

(a)  Which of the following are APs ?

 (i) 3 , 5 , 7 , 8 ,……    (ii)  3 , 4 , 7 , 9 ,……… 

(iii) 3 , 6 , 9 , 11 ,……   (iv) 3 , 6 , 9 , 12 ,…                                                

(b)  How many  trees planted by class   ?

 (i)  12      (ii)  24    (iii) 36     (iv) 48

(c) If  form an AP where is define as  , then the  term is :

 (i)  – 31      (ii) – 51     (iii) – 41     (iv) – 21 

(d)  How many trees will be planted by the students ?

 (i) 324           (ii) 423         (iii) 234      (iv) 243

Solution:  (a) (iv) 3 , 6 , 9 , 12 ,…………                                                

 (b) (iii)  36

  [ The number of trees planted by class   ]

 (c)  (iii)   – 41           

  [  We have ,   ]

  (d) (iii) 234    

   [ The trees planted by 3 section of class  to class  are :

    3 × 1 , 3 × 2 , 3 × 3 , 3 × 4 , …………….. , 3 × 12

    i.e.,   3 , 6 , 9 , 12 , …………., 36 

   Here ,    ,      ,   

    ]

Q4: In a potato race, a bucket is placed at the starting point, which is 5 m from the first potato, and the other potatoes are placed 3 m apart in a straight line .There are ten potatoes in the line . A competitor starts from the bucket , picks up the nearest potato, runs back with it , drops it in the bucket, runs back to pick up the next potato, runs to the bucket to drop it in, and she continues in the same away until all the potatoes are in the bucket.

 

 Answer the question based upon this situation :

(a) What is the distance by the competitor to pick up first potato ?

 (i) 10 m        (ii) 13 m        (iii)  16 m        (iv) 19 m

(b)  What is distance by the competitor to pick up  potato ?

 (i)  45 m     (ii)   43 m      (iii)  46 m     (iv) 47 m

 (c) What is the total distance the competitor has to run ?

   (i) 370 m     (ii) 380 m     (iii)  340 m      (iv) 350 m

 (d)  If   ,   ,  are three consecutive terms of an A.P , then the value of  is :

   (i)              (ii)           (iii)          (iv)  5

Solution:  (a) (i) 10 m

[  The distance by the competitor to pick up first potato  m ]

 (b)  (iii)  46 m      

[ The distances (in metres) run by the competitor are : 2×5 ,2 (5 + 3) , 2(5+3+3) ,………

 i.e., 10 , 16 , 22 , ……………….

 Here ,   ,   ,  

   m

  (c)  (i)  370 m

 [ The distances (in metres) run by the competitor are :  2×5 , 2 (5 + 3) , 2(5+3+3) ,………

 i.e., 10 , 16 , 22 , ……………….

 Here ,   ,   ,  

 

  ]

  (d)  (iii)        

   [ We have,   

       ]

Class 10 Arithmetic Progressions 2 Marks Questions and Answers  

SECTION = B

Q1. Find the  and  terms of an AP :  3 , 8 , 13 , 18 , …………. [SEBA2016]

Solution : Here ,    and  

We know that , 

   

and

Q2. If the  term of the A.P :  – 1, 4 ,9 ,14, ……….. is 129 ,find the value of  . [2017C]

Solution:  Here,  , ,   

 We know that,  

 

 

 

   

Q3. Find the  term from the end (towards the first term) of the A.P :  5 , 9 , 13 , ……., 185 .   [CBSE 2016]

Solution:  We write the given AP in the reverse order then  185 , ……………… , 13 , 9 , 5 .

We know that ,       

Here ,   ,     , 

 

Thus ,  term from the last term is 153 .

Q4. In an AP, if   , find the AP.

Solution:   Given ,   

      

We know that , 

 

    

 

  

 Therefore, the AP’s are :  5 , 13 , 21 , ………………

Q5. Find the number of terms of the AP :  18 ,   , 13 , ………………, – 47  .

Solution:   Here ,  ,

  ,  

We know that,

 

 

Q6. The   term of an A.P. is  – 4 and its   term is – 16 . Find its  term . 

Solution:  Let   and   be the first term and common difference of an AP respectively .

               

                      

                  

and              

 

 

From   we get  ,  

 

Q7. In the following APs, find the missing terms in the boxes .

        

Solution:  Let   and  be the missing term and also  be common difference of an AP.

Given,                 

 and   

 

 

      

 Therefore,       

and                            

Class 10 Arithmetic Progressions 3 Marks Questions and Answers                                                   

SECTION = C

Q1. The first term of an AP is 5 , the last term is 45 and the sum is 400 . Find the number of terms and the common difference . [SEBA 2015]

Solution :   Here , ,  ,  and let  be the common difference .

  

 

  

  Again,    

 

       [ From ]

 

   

  From  , we get  

    

    Therefore, the numbers of terms is  16   and common difference is     .

Q2. Determine the AP whose  term is 5 and the  term is 9 .

Solution:  Let and  are first term and common difference respectively .

                               

                               

   

 and                      

 

From  , we get  

   

Hence , the required of an AP : 3 , 4 , 5 , 6 , ...... .

Q3. The  term of an A.P. is zero . Prove that the  term of the A.P. is three times its  term . [DELHI 2016]

Solution:  Let and  are first term and common difference respectively .                   

      

 

 

  

 

 

             [ From ]

and      

    

    Proved.

Q4. In the following APs, find the missing terms in the boxes .

     

Solution:  Let  ,  , and   be the missing term, and also  and  be first term and common difference of an AP.

                         

                        

         

   and

  

   

         

   From  , we get 

  

  

    

                                                            

   

            

   

Q5.  Find how many integers between 200 and 500 are divisible by 8 . [2017 Delhi]

Solution:   The list of integers between 200 and 500 are divisible by 8  is : 200 , 208 , 216 , 224 , …………… , 496 .

 Here,    ,     ,    

  We know that,      

                   

                   

Q6. Which term of the AP : 3 , 15 , 27 , 39 , …………. Will be 132 more than its  term ?

Solution :     Here ,    and 

    

 A/Q,   

  

  

 

 

 

Q7. If   denotes the sum of first  terms of an AP, Prove that   .

Solution :    let  and  be the first term and common difference of an AP respectively .

We know that ,    

  

 

  

  and 

 

 

    

  and  

 

 

          [ From   ]    proved .

Q8. Find the  term from the last term of the AP :  3 , 8 , 13 , ……………… , 253 .

Solution:  We write the given AP in the reverse order :  253 , ……………….. , 13 , 8 , 3

 Here ,   ,    ,   

 We know that ,

 

 

  

Q9. Find the sum of the AP :  .

Solution:  Here ,    ,    

 and    

 

  

  

  

  

 Now ,    

  

Q10. In an AP , given  ,  , find  and   .

Solution:  Given ,      

          

  

  

 

        

             

Q11. Find the sum of the first 22 terms of the AP :  

Solution:   Here ,     ,      ,   

   

 

 

Q12. Find the sum of the first 15 multiples of 8 .

Solution:  The AP’s are :  8 , 16 , 24 , ………………….      .  

Here,   ,  ,  

    We know that, 

  

            

            

             

             

Q13. Find the sum of first 24 terms of the list of numbers whose  term is given by   .  [ SEBA 2018]

Solution: We have ,   

 

 

  

 Here ,  

 

       

        

           

Q14. How many terms of the AP : 9 , 17 , 25 , …………. must be taken to given a sum of 636 ? [SEBA 2016]

Solution: Here ,    ,   , 

 We know that,   

     

       

       

       

      

      

      

      

                      or      

       (impossible)     

   Therefore, the number of terms is 12 .

Q15. If the seventh term of an A.P is  and its ninth term is  , find its   term . [2014 Delhi]

Solution:  Let  and  be the first term and common difference of an AP respectively.

                              

                                  

                           

and        

  

   

      

  From  , we get 

 

 

 

    

   So,   

  

      

Q16. Determine the AP whose third term is 16 and the   term exceeds the  term by 12 .

Solution:  Let  and be the first term and common difference of an AP respectively.

 

and  

 

  

 

    

 From  , we get 

 

   

Q17. Find the sum of the first 22 terms of an AP whose common difference is 7 and the   term is 149 .    [SEBA 2019]

Solution:  Here ,   and  

  We have ,

     

    

    

   and  

  

  

      

Q18. How many three-digit numbers are divisible by 11  ?

Solution:     The list of three digit numbers divisible by 11 is : 110 , 121 , 132 , ……………., 990 .

Here ,   and  

We know that ,  

  

  

  

    

Q19. Find the sum of first 51 terms of an AP whose second and third term are 14 and 18 respectively . [SEBA 2020]

Solution:    Let  and  be the first term and common difference of an AP respectively .

A/Q,     

 

 

and   

 

 

 

  Putting the value of  in  , we get  

 

  Now,   

 

 

      

Q20. In a flower bed, there are 23 rose plants in the first row, 21 in the second , 19 in the third , and so on . There are 5 rose plants in the last row . How many rows are there in the flower bed ?

Solution:  The number of rose plants in the   rows are :  23 , 21 , 19 , 17 , …………….. , 7 , 5

 Let the number of rows in the flower bed be  .

 Here ,    ,   ,

 We know that ,    

  

  

 

     

 So, there are 10 rows in the flower bed. 

 Class 10 Arithmetic Progressions 4 Marks Questions and Answers                                                            

SECTION = D

Q1. If the  term of an A.P. is  and  term is p , prove that its  term is  .  [CBSE 2017]

 Solution:  Let  and be the first term and common difference of an AP respectively.    

                          

    

and      

      

 

  

 

 

    

  From   , we get  

 

 

  

        proved .

Q2. If the ,  and   terms of an AP are  ,  and  respectively ; prove that   

Solution: let ,  and be the first term and common difference of an A.P respectively .

 We know that ,   

 So,                                    

 

  and   

       

   Again,           

  

 

 

  

  

  

 

  

       proved .  

Q3. The sum of first 20 terms of an AP is 400 and that of 40 terms is 1600 . Find the sum of first 10 terms and that of  terms .  [SEBA 2017]

Solution:  let and  be the first term and common difference of an AP respectively .

A/Q,  

  

  

  

  and  

  

  

  

  

  

   

  Putting the value of  in  , we get  

  

        

  Now ,      

     

 and      

    

Q4. If the first term and common difference of an AP are and  respectively,  then show that    .

Solution:   Since the first term and common difference of an AP are and  respectively .

 

 Again,   

 and         [ From (i) ]

    

  

  

      [  From (i) ]

     Proved.

Q5. The sum of the  and  term of an AP is 24 and the sum of the  and  terms is 44 . Find the first  three terms of the AP.

Solution:  Let the first term and common difference of an AP are and  respectively .

A/Q,   

 

 

and  

 

  

  

    

 

     

 From  , we get 

  

Thus , the AP’s are :    

i.e. ,    

Q6. The   term of an AP is twice theterm , then  show that the term of an AP is twice the term .   

Solution: Let  and  be the first term and common difference of an AP respectively.

          A/Q, 

 

 

  

 

 and 

 

    

 So,             Proved.

Q7. Find the sum of the integers between 100 and 200 that are : (i) divisible by 9    (ii) not divisible by 9  .

Solution: The list of the integers between 100 and 200 are :  108 , 117 , 126 , ………….., 198 .

   (i)  Here ,   ,     ,    .    

   We know that ,

    

    

    

Again, 

 

 

    

(ii)  We know that , the sum of first 100 positive integers is

 

And  the sum of first 200 positive integers is

 

Therefore , the sum of the integers between 100 and 200  .

 So, the sum of the integers between 100 and 200 that are not divisible by 9

  Total number  –  Total numbers divisible by 9  .                           

Q8. The ratio of the  term to the  term of an AP is 2 : 3 . Find the ratio of the term to the   term and also the ratio of the sum of the first five terms to the sum of the first 21 terms .

Solution : let  and  be the first term and common difference of an AP respectively .

A/Q,   

   

   

 

   and         [from ]

    

Again,          [From ]

   

Q9. The sum of four consecutive numbers in an AP is 32 and the ratio of the product of the first and the last term to the product of two middle terms is 7 : 15 .Find the numbers .   [CBSE 2018]

Solution:   let  , , and are four consecutive number respectively .

 A/Q ,   

   

  Again,   

 

 

 

 

 

 

  

     If   and  then ,  ,  ,  and 

     i.e. ,    – 2 , 2  , 6  and 10 .

     If   and  then , , ,  and 

      i.e. ,    10 , 6  , 2  and   – 2  .

Q10. The sum of the first  terms of an AP whose first term is 8 and the common difference is 20 is equal to the sum of first  terms of another AP whose first term is – 30 and the common difference is 8 . Find   .

Solution:   We know that ,   

                Here ,   and   

            

                      

              Here     and     

                   

                            

                  A/Q,               

                    

                   

                   

                    

                     

                     

                       

Q11. If the  term of an A.P is    and term is , prove that the sum of firstterms of the A.P. is   .

Solution:  let,  and  be first term and common difference of an A.P respectively .

     We know that ,   

                                             

           

 and            

    

    

   

 

      

 From  , we get   

  

           

 

 

  

Q12. If , andare in A.P, then prove that  ,  and  are also in A.P.    [SEBA 2017]

Solution:   Since , ,  and  are in A. P.

                  

                  

                   

                    

   Again,    ,   and   are in A.P.

        

                      

                       

                 

                  

                  

                  

                   [  ]

                 

                  

              ,  and   are also in A.P.

Q13. The sum of the third and the seventh terms of an AP is 6 and their product is 8 . Find the sum of first sixteen terms of the AP.

Solution:  let ,  and  are first term and common difference of an A.P respectively .

Therefore,                             

       

                             

                                              

 

and                

 

 

 

 

 

 From  and  , we get  

  

  

   

   

 

    

  Putting   in (i) Eq.,  then   

  

    

    Putting  in (i) Eq.,  then   

   

     

Q14. If the sum of  terms of an A.P. is the same as the sum of its  terms, show that the sum of its  term is zero.

Solution:  let  and be first term and common difference of an AP respectively.

 A/Q ,      

           

             

              

              

               
               

                     

              

                    [ From   ]

                          

                                 proved .