• Dispur,Guwahati,Assam 781005
  • mylearnedu@gmail.com

5. Arithmetic Progressions

SEBA Class 10 Maths Chapter 5. Arithmetic Progressions

Chapter 5. Arithmetic Progressions

Class 10 Maths Chapter 5. Arithmetic Progressions Multiple Questions and Solutions :

Question : 11th term of the AP :   is : 

(a) 28      (b) 22      (c)  – 38   (d) 

Solution :  (b) 22

[ Here, ,   ,

We have,

]

Question : The sum of the first 100 positive integer is :

(a) 5050    (b) 5060    (c) 6050   (d) 5005

Solution : (a) 5050     

[ Here, 

We have,

]

Question:  The sum of  first 16 terms of the AP : 10 , 6 , 2 , ……… is :

(a)  – 320    (b) 320    (c)  – 352    (d) – 400  

Solution :  (a)  – 320 

[ Here,  

We have,

]

Question: The  term from the end of the AP : – 11 , – 8 ,– 5 , ……… , 49 is :

(a) 37              (b) 40      (c) 43             (d)  58

Solution:   (b) 40

[ Here,

 

We know that , the  term from the end of the AP

The  term from the end of the AP   ]

Question : Which of the following form an AP ?

(a)  1 , 1 , 2 , 2 , 3 , 3 , ………

(b)  0 , 2 , 0 , 2 , ………..

(c)   ………….

(d)   ……..

Solution: (d)   ……..

[ (a) We have ,

(b) We have ,

(c) We have , 

(d) We have,

   Here , , is an AP. ]

Question: If the numbers  ,  and are in AP, then the value of  is

(a)   0     (b)   – 2   (c)   – 1   (d)   1

Solution :  (d)   1   

[ We have,  

      ] 

Question : The list of number :  – 10 , – 6 , – 2 , 2 , ……… is:

(a)  an AP with     

(b)  an AP with     

(c)  an AP with     

(d)  not an AP      

Solution :  (b)  an AP with     

[ Here , First term  

Common difference

 ]

Question : The sum of first 20 odd natural numbers is : [CBSE 2012]

(a) 100   (b) 210    (c) 400   (d) 420

Solution :  (c) 400  

[  List of odd natural numbers : 1 , 3 , 5 , 7 , ……..

Here,

We have, 

]

Question: Which of the following is not an A.P. ?  [CBSE 2020 (standard)]

(a)                              

(b)   

(c)                                

(d)  

Solution :     (c)                               

[ (a) :     ;   

(b)  

 (c)        ;                            

(d)   ]

Question : If  term of an A.P. is , then the common difference is :

(a)  7           (b)  10     (c)   12      (d)  6

Solution : (d)  6

[  Given,  

The common difference ]

Question: The first three terms of an AP respectively are  ,  and  ,then  equals :  [2014 Delhi]

(a) – 3     (b)  4       (c)  5       (d) 2                       

 Solution :    (d)   2  

 [ Since  ,  and  are three consecutive terms of an AP, then

 

 

     ]

Question : The common difference of the AP. : is :

(a)       (b)       (c)      (d) 

Solution : (c)   

[ Here, First term

Common difference ]

Question: The next term of the A.P :    ,  ,  , …….. is :

  (a)       (b)        (c)         (d)

Solution :   (c)   

[ The AP. :     

 Here,  ,  

  term ]

Question:  term of  an AP : is :  [SEBA 2019]

 (a) 97       (b) 77        (c)  – 77      (d)   – 87   

 Solution :      (c)  – 77    

 [  Here,     ,   ,   

 We know that ,  

  ]

Question:  The common difference of an A.P. in which  is

 (a)  7     (b)  8    (c)   5    (d)  6

Solution :  (d)  6        

[ We have,

 

 

     ]

Question : Which term of the AP : 21 , 42 , 63 , 84 , ……. Is 210 ?

(a)         (b)        (c)      (d)   

Solution:  (b)  

[ Here,  

We have, 

]

Question :  If the common difference of an AP is 5 , then  is : 

(a)  32      (b)  20      (c)  24     (d) 30

Solution :  (b)  20

 [ We have , 

   ]  

Question: If   and   of an A.P. , then  is :

 (a)  372      (b)  273       (c)  237       (d) 723

Solution :     (b)  273  

[ We know that ,    

 

 

     ]

Question: The common difference of the A.P’s :  is : [ CBSE 2013]

 (a)          (b)          (c)           (d) 

Solution :    (d)     

[ Common difference       ]

Question: The  term of  an AP’s :  0  ,  – 4 ,  – 8 ,  – 12 , …………….. is : [SEBA 2020]

 (a)  – 96       (b)   – 100     (c)  – 104     (d)  – 108  

Solution :      (b)   – 100                     

 [ Here ,  ,     ,  

  

   ]

Question: The  term of the AP.   is :    [CBSE 2015 F]

 (a)  77        (b)  44       (c)  66      (d)   55

Solution :  (d)  55

 [ Here ,  ,    ,

  , 

Question : If  are three consecutive terms of an A.P., then the value of  is : [CBSE 2009]

(a)        (b)      (c)       (d)

Solution : (c) 

[  We have, 

 

]

Class 10 Arithmetic Progressions  Fill in the blank :

Q1. The first three terms of an AP respectively are  ,  and  ,then  equal to   .

Solution :   5

[ We have,

 

  ]

Q2. The sum of first five multiples of 3 is   .

Solution :  45

[ List of numbers becomes : 3 , 6 , 9 , 12 , 15 . 

 Here ,

 

   ]

Q3. The next term of the A.P. : , , , ,   is  .

Solution :         .

[ The A.P. is :    ,  ,  ,    ;

Here, 

    term      ]

Q4. For the AP :   ,  ,  ,  , then  term is   .

Solution :         .

[ Here,      ,   

     ]

Q5.  If   ,   and   , then  is   .

Solution :      2           

[  We have,  

    ]

Q6. The sum of first  positive integers  .

Solution :     .

Class 10 Arithmetic Progressions Answer following the questions

Q1. If the  term of the A.P.    – 1 , 4 , 9 , 14 , ……….  is 129 , find the value of  .[ CBSE 2017 C]

Solution :    Here ,   ,  

 and 

 

 

 

 

Q2. Find the value of  so that   ,   ,  in A.P.     [ CBSE 2020 (basic)]

Solution :  We have,  

    

Q3. Find the  term of the A.P.  :   ,  ,, ,  .[CBSE 2020 (basic)]

Solution :    Here ,   ,     ,   

 

 .

Q4. Find the  term of the AP : 2 , 7 , 12 , …………

Solution:  Here ,   ,  , 

 We know that ,  

 

Q5. In an AP, given   and , then find .

Solution:   We know that ,  

  

Q6. Write  term of an A.P if its  term is  .

Solution:  Given ,    

   

Q7. Which term of the AP :  3 , 8 , 13 , 18 , ……………. , is 78 ?   [SEBA2015]

Solution : Here ,  ,   and  

 We know that , 

  

  

  

  

  

Q8. Find the sum of the first 100 positive integers .

 Solution :  We have ,

Q9. Find the sum of an AP’s :  2 , 7 , 12 , …………… , to 10 terms .

Solution :   Here ,  ,    and  

 

   

Class 10 Maths Chapter 5. Arithmetic Progressions 2 Marks Questions and Answers  

Q1. Find the  and  terms of an AP :  3 , 8 , 13 , 18 , …………. [SEBA 2016]

Solution : Here ,    and  

We know that , 

   

and

Q2. If the  term of the A.P :  – 1, 4 ,9 ,14, ……….. is 129 ,find the value of  . [2017C]

Solution:  Here,  , ,   

 We know that,  

 

 

 

   

Q3. Find the  term from the end (towards the first term) of the A.P :  5 , 9 , 13 , ……., 185 .   [CBSE 2016]

Solution:  We write the given AP in the reverse order then  185 , ……………… , 13 , 9 , 5 .

We know that ,       

Here ,   ,     , 

 

Thus ,  term from the last term is 153 .

Q5. Find the number of terms of the AP :  18 ,   , 13 , ………………, – 47  .

Solution:   Here ,  ,

  ,  

We know that,

 

 

Q6. The   term of an A.P. is  – 4 and its   term is – 16 . Find its  term . 

Solution:  Let   and   be the first term and common difference of an AP respectively .

               

                      

                  

and              

 

 

From   we get  ,  

 

Q7. In the following APs, find the missing terms in the boxes .

        

Solution:  Let   and  be the missing term and also  be common difference of an AP.

Given,                 

 and   

 

 

      

 Therefore,       

and                            

Class 10 Maths Chapter 5. Arithmetic Progressions 3 Marks Questions and Answers                                                   

Q1. The first term of an AP is 5 , the last term is 45 and the sum is 400 . Find the number of terms and the common difference . [SEBA 2015]

Solution :   Here , ,  ,  and let  be the common difference .

  

 

  

  Again,    

 

       [ From ]

 

   

  From  , we get  

    

    Therefore, the numbers of terms is  16   and common difference is     .

Q2. Determine the AP whose  term is 5 and the  term is 9 .

Solution:  Let and  are first term and common difference respectively .

                               

                               

   

 and                      

 

From  , we get  

   

Hence , the required of an AP : 3 , 4 , 5 , 6 , ...... .

Q3. The  term of an A.P. is zero . Prove that the  term of the A.P. is three times its  term . [DELHI 2016]

Solution:  Let and  are first term and common difference respectively .                   

      

 

 

  

 

 

             [ From ]

and      

    

    Proved.

Q4. In the following APs, find the missing terms in the boxes .

     

Solution:  Let  ,  , and   be the missing term, and also  and  be first term and common difference of an AP.

                         

                        

         

   and

  

   

         

   From  , we get 

  

  

    

                                                            

   

            

   

Q5.  Find how many integers between 200 and 500 are divisible by 8 . [2017 Delhi]

Solution:   The list of integers between 200 and 500 are divisible by 8  is : 200 , 208 , 216 , 224 , …………… , 496 .

 Here,    ,     ,    

  We know that,      

Q6. Which term of the AP : 3 , 15 , 27 , 39 , …………. Will be 132 more than its  term ?

Solution :     Here ,    and 

    

 A/Q,   

  

  

 

 

 

Q7. If   denotes the sum of first  terms of an AP, Prove that   .

Solution :    let  and  be the first term and common difference of an AP respectively .

We know that ,    

  

 

  

  and 

 

 

    

  and  

 

 

          [ From   ]    proved .

Q8. Find the  term from the last term of the AP :  3 , 8 , 13 , ……………… , 253 .

Solution:  We write the given AP in the reverse order :  253 , ……………….. , 13 , 8 , 3

 Here ,   ,    ,   

 We know that ,

 

 

  

Question : Find the sum of the AP :  .

Solution : Here,   and

We know that ,

 

 

 

We have,

Question:  In an AP , given  ,  , find  and   .

Solution:  Given ,      

[ Use ]

Question: Find the sum of the first 22 terms of the AP :  

Solution:   Here ,     ,      ,   

  

Q12. Find the sum of the first 15 multiples of 8 .

Solution:  The AP’s are :  8 , 16 , 24 , ………………….      .  

Here,   ,  ,  

    We know that, 

  

            

            

             

             

Q13. Find the sum of first 24 terms of the list of numbers whose  term is given by   .  [ SEBA 2018]

Solution: We have ,   

 

 

  

 Here ,  

 

       

        

           

Question : In a flower bed, there are 23 rose plants in the first row, 21 in the second , 19 in the third , and so on . There are 5 rose plants in the last row . How many rows are there in the flower bed ?

Solution:  The number of rose plants in the 1st  , 2nd , 3rd  , ………. , rows are : 23 , 21 , 19 , 17 , …………….. , 7 , 5

Let the number of rows in the flower bed be  .

Here,, ,

We know that,

 

 

 So, there are 10 rows in the flower bed.

Q14. How many terms of the AP : 9 , 17 , 25 , …………. must be taken to given a sum of 636 ? [SEBA 2016]

Solution: Here ,    ,   , 

 We know that,   

     

       

       

       

      

      

      

      

                      or      

       (impossible)     

   Therefore, the number of terms is 12 .

Q15. If the seventh term of an A.P is  and its ninth term is  , find its   term . [2014 Delhi]

Solution:  Let  and  be the first term and common difference of an AP respectively.

                              

                                  

                           

and        

  

   

      

  From  , we get 

 

 

 

    

   So,   

  

      

Question: Determine the AP whose third term is 16 and the   term exceeds the  term by 12 .

Solution:  Let  and be the first term and common difference of an AP respectively.

 

and  

 

  

 

    

 From  , we get 

 

   

Q17. Find the sum of the first 22 terms of an AP whose common difference is 7 and the   term is 149 .    [SEBA 2019]

Solution:  Here ,   and  

  We have ,

     

    

    

   and  

  

  

      

Q18. How many three-digit numbers are divisible by 11  ?

Solution:     The list of three digit numbers divisible by 11 is : 110 , 121 , 132 , ……………., 990 .

Here ,   and  

We know that ,  

  

  

  

    

Q19. Find the sum of first 51 terms of an AP whose second and third term are 14 and 18 respectively . [SEBA 2020]

Solution:    Let  and  be the first term and common difference of an AP respectively .

A/Q,     

 

 

and   

 

 

 

  Putting the value of  in  , we get  

 

  Now,   

 

 

      

Q20. In a flower bed, there are 23 rose plants in the first row, 21 in the second , 19 in the third , and so on . There are 5 rose plants in the last row . How many rows are there in the flower bed ?

Solution:  The number of rose plants in the   rows are :  23 , 21 , 19 , 17 , …………….. , 7 , 5

 Let the number of rows in the flower bed be  .

 Here ,    ,   ,

 We know that ,    

  

  

 

     

 So, there are 10 rows in the flower bed. 

 Class 10 Maths Chapter 5. Arithmetic Progressions 4 Marks Questions and Answers                                                          

Question: The sum of first 20 terms of an AP is 400 and that of 40 terms is 1600 . Find the sum of first 10 terms and that of  terms .  [SEBA 2017]

Solution:  let and  be the first term and common difference of an AP respectively .

A/Q,  

  

  

  

  and  

  

  

  

  

  

   

  Putting the value of  in  , we get  

  

        

  Now ,      

     

 and      

    

Question: The sum of the  and  term of an AP is 24 and the sum of the  and  terms is 44 . Find the first  three terms of the AP.

Solution:  Let the first term and common difference of an AP are and  respectively .

A/Q,   

 

 

and  

 

  

  

    

 

     

 From  , we get 

  

Thus , the AP’s are : 

i.e. ,    

Question: Find the sum of the integers between 100 and 200 that are : (i) divisible by 9    (ii) not divisible by 9  .

Solution: The list of the integers between 100 and 200 are :  108 , 117 , 126 , ………….., 198 .

   (i)  Here ,   ,     ,    .    

   We know that ,

    

    

    

Again, 

 

 

    

(ii)  We know that , the sum of first 100 positive integers is

 

And  the sum of first 200 positive integers is

 

Therefore , the sum of the integers between 100 and 200  .

 So, the sum of the integers between 100 and 200 that are not divisible by 9

  Total number  –  Total numbers divisible by 9  .                           

Question: If , andare in A.P, then prove that  ,  and  are also in A.P.    [SEBA 2017]

Solution:   Since , ,  and  are in A. P.

       

 

Again,    ,   and   are in A.P.

 

 

 

 

 

 

  [  ]

 

     ,  and   are also in A.P.

Question: The sum of the third and the seventh terms of an AP is 6 and their product is 8 . Find the sum of first sixteen terms of the AP.

Solution:  let ,  and  are first term and common difference of an A.P respectively .

Therefore,                             

       

                             

                                              

 

and                

 

 

 

 

 

 From  and  , we get  

  

  

   

   

 

    

  Putting   in (i) Eq.,  then   

  

    

    Putting  in (i) Eq.,  then