• Dispur,Guwahati,Assam 781005
  • mylearnedu@gmail.com

4. DETERMINANTS

Class 12 Mathematics Chapter 4. DETERMINANTS

Chapter 4. Determinants

Class 12 Chapter 4. Determinants Exercise 4.1

Evaluate the determinants in Exercises 1 and 2 .

1.    

Solution:  We have, 

     

2.  (i)     (ii)  

Solution:  (i) We have   

3. If   , then show that  .

Solution: Given

 

Again,

  Proved.

(ii) We have,

4. If   , then show that  .

Solution: We have,  

Again, 

Therefore,    Proved

5. Evaluate the determinants :

(i)     (ii)     (iii)       (iv) 

Solution:  (i) We have,  

(ii) We have,

(iii) We have, 

(iv) We have, 

6. If   , find  .

Solution:  We have,

7. Find values of  , if

(i)         (ii)   

Solution:  (i) We have, 

(ii) We have,  

8. If   , then  is equal to

(A) 6        (B)         (C) – 6         (D)  0

Solution:  We have,   

The correct answer (B) ± 6 .

Class 12 Chapter 4. Determinants Exercise 4.2

1. Find area of the triangle with vertices at the point given in each of the following :
(i) (1, 0), (6, 0), (4, 3) (ii) (2, 7), (1, 1), (10, 8)
(iii) (–2, –3), (3, 2), (–1, –8)

Solution:  We know that the area of the triangle  whose  vertices are  ,  and  is given by

 (i)  (1, 0), (6, 0), (4, 3)

Here,  , ,  ,  ,  ,  

We have,

Square units.

(ii) (2, 7), (1, 1), (10, 8)
Here,  ,  ,  ,  ,  ,  

We have,

(iii) (–2, –3), (3, 2), (–1, –8)

Here,  ,  ,  ,  ,  ,  

We have,

Square units.

2. Show that points A (a, b + c), B (b, c + a), C (c, a + b) are collinear.

Solution:   Here,  ,  ,  ,  ,  ,  

We have,

Therefore, the points A (), B (), C () are collinear.

3. Find values of k if area of triangle is 4 sq. units and vertices are :
(i) (k, 0), (4, 0), (0, 2)    (ii) (–2, 0), (0, 4), (0, k)

Solution:  (i) (k, 0), (4, 0), (0, 2)  

 Here,  ,  ,  ,  ,  ,  

We know that ,

     

 or

Therefore, the value of K are 0 and 8 .

(ii) (–2, 0), (0, 4), (0, k)

Here,  ,  ,  ,  ,  ,  

We know that,

 

Therefore, The value of K are 0 and 8 .

4. (i) Find equation of line joining (1, 2) and (3, 6) using determinants.
(ii) Find equation of line joining (3, 1) and (9, 3) using determinants.

Solution:  (i) Let  be any point on the line joining (1,2) and (3,6) .

Here,  , ,  ,  ,  ,

We know that,  

   

Therefore, the equation is  .

(ii) Let  be any point on the line joining (3,1) and (9,3) .

Here,  , ,  ,  ,  ,  

We know that,

  

Therefore, the equation is  .

5. If area of triangle is 35 sq units with vertices (2, – 6), (5, 4) and (k, 4). Then k is
(A) 12        (B) –2           (C) –12, –2            (D) 12, –2

Solution:  Here,  , ,  ,  ,  ,  

We know that,

   

Therefore, the value of k are – 2 and 12 .

Class 12 Chapter 4. Determinants Exercise 4.3

Write Minors and Cofactors of the elements of following determinants :

1.  (i)      (ii)   

Solution:  (i)      

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Now, Cofactor of  is  .

So,

 

 

 (ii) 

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Now, Cofactor of  is .

So, 

 

 

 

2. (i)      (ii)   

Solution:  (i) We have,     

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Now, Cofactor of  is  .

So, 

 

 

 

 

 

 

 (ii) We have,  

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Minor of an element  is  .

Now, Cofactor of  is .

So,

 

 

 

 

 

 

 

 

3. Using Cofactors of elements of second row , evaluate  .

Solution:  We have,  

Here,  , ,

The cofactor of   

The cofactor of  

The cofactor of  

4. Using Cofactors of elements of second row , evaluate  .

Solution: Here,  , ,

The cofactor of   

The cofactor of  

The cofactor of  

5. If   and is Cofactors of  , then value of  is given by

(A)     

(B)     

(C)    

(D)

Class 12 Chapter 4. Determinants Exercise 4.4

Find adjoint of each of the matrices in Exercises 1 and 2 .

1.     2.  

Verify  in Exercise 3 and 4

3.       4.  

Find the inverse of each of the matrices (if it exists) given in Exercises 5 to 11.

5.   6.   7.   8.   9.   10.

11.  

12. Let  and B . Verify that  .

13. If A  , Show that  . Hence find  .

14. For the matrix A  , find the numbers  and  such that  .

15. For the matrix A  . Show that   . Hence , find  .

16. If A  . Verify that  and hence find .

17. Let A be a non-singular square matrix of order 3×3 . Then  is equal to

(A)       (B)   (C)     (D)  

18. If A is an invertible matrix of order 2 , then  is equal to :

(A)    (B)       (C)  1     (D) 0

Class 12 Chapter 4. Determinants Exercise 4.5

Examine the consistency of the system of equations in Exercises 1 to 6.
1.   x + 2y = 2 ;  2x + 3y = 3                      

2. 2x – y = 5  ;   x + y = 4          

3.  x + 3y = 5 ;  2x + 6y = 8              

4. x + y + z = 1 , 2x + 3y + 2z = 2 , ax + ay + 2az = 4                                                 

5. 3x–y – 2z = 2  ,  2y – z = –1  , 3x – 5y = 3      

6. 5x – y + 4z = 5  , 2x + 3y + 5z = 2 ,  5x – 2y + 6z = –1
Solve system of linear equations, using matrix method, in Exercises 7 to 14.
7. 5x + 2y = 4  ;  7x + 3y = 5       

8. 2x – y = –2  ; 3x + 4y = 3      

9. 4x – 3y = 3  ; 3x – 5y = 7    
10. 5x + 2y = 3  , 3x + 2y = 5                                          

11. 2x + y + z = 1 , x – 2y – z =    , 3y – 5z = 9    

12. x – y + z = 4  ; 2x + y – 3z = 0 ,  x + y + z = 2
13. 2x + 3y +3 z = 5 , x – 2y + z = – 4  , 3x – y – 2z = 3                                                                             

14. x – y + 2z = 7 , 3x + 4y – 5z = – 5  , 2x – y + 3z = 12

15. If  A  , find  . Using  solve the system of equations
                     2x – 3y + 5z = 11
                     3x + 2y – 4z = – 5
                       x + y – 2z = – 3
16. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.

Class 12 Chapter 4. Determinants Miscellaneous Exercises

1. Prove that the determinant    is independent of  .

2. Without expanding the determinant , prove that   .

3. Evaluate:  

4. If  and  are real numbers and  , Show that either  or  .

5. Solve the equation  .

6. Prove that:

7. If   and  , find  .

8. Let A  . Verify that  (i)    (ii)  

9. Evaluate :   

10. Evaluate:    

Using properties of determinant in Exercises 11 to 15 , Prove that :

11. 

12.  

13.

14.

15.

16. Solve the system of the following equations

  

 

 

Choose the correct answer in Exercise 17 to 19 .

17. If  are in A.P. then the determinant  is

(A)  0       (B)  1          (C)        (D) 

18. If  are non-zero real numbers, then the inverse of matrix  is

(A)              (B)                      

(C)     (D)

19. Let A  , where  . Then

(A)      (B)    (C)    (D)