• Dispur,Guwahati,Assam 781005
  • mylearnedu@gmail.com

7. Coordinates Geometry

SEBA Class 10 Maths Chapter 7. Coordinates Geometry

Chapter 7. Coordinates Geometry

 Class 10 Maths Chapter 7 Coordinate Geometry Multiple Questions and Solutions :

Question : The mid-point of the line segment joining the points (5,1) and (m , 3) is (2,2) , then the value of m is : [SEBA2013]

(a) – 2        (b)  – 1    (c)  2       (d)  1

Solution :  (b)  – 1

[ Using section formula , we have

and 

Now,    

]

Question : The distance of the point (– 3 ,4) from the origin is : [SEBA 2014]

(a) 1   (b)  7     (c)  12     (d) 5

Solution :  (d) 5 

[ let the distance of the point  P(– 3 ,4) from O(0,0)

Using distance formula, we have

]

Question : The ratio in which y-axis divides the line segment joining the points (– 2,0) and (4 , 0) is : [SEBA 2023]

(a) 2:3    (b) 1:2     (c) 1:4   (d) 2:1

Solution : (b) 1:2  

  [ let, the ratio be

Given, the point on the y-axis , i.e.,

Here,  , , , 

Using  section formula ,

  ]

Question : The point  is equidistant from the points  and  ,then : [ SEBA 2020]

(a)                                                               

(b) 

(c)                                                                

(d)  

Solution:  (c)   .

[ Let the distance of  from  and  are equal .

 A/Q ,

 

  

  

  

        ]

Question :  The distance between the points  and  is :     [SEBA 2019]

(a)  10 units       (b)  8 units      (c)  6  units        (d)  2 units

Solution:    (b)  10 units                             

[   The distance between the points

   units  ]

Qusetion :   If   is mid-point of the line segment joining the points  and  ,then  is :

 (a)   – 1       (b)  1      (c)  2          (d)  – 2

Solution:  (b)  1      

[ We have, 

      ]

Question :  The distance between the points  and   is   :      [SEBA 2015 ,2018]

 (a)  2       (b)          (c)   1       (d)  0

Solution:    (b)                                  

 [ The distance between the points

    unit    ]

Question : The line segment joining the points  and  in the ratio 2 : 3 , then the coordinate of the point is : 

  (a)          (b)         (c)         (d) 

Solution:   (d)   .

[  Here,  ,  ,    ,   ,    and  

 

 and    ]

Question :  The distance between the point  and  is :

 (a)          (b)           (c)         (d) 

Solution:  (c)     

 [ The distance  

   unit ]

Question :  The distance of the point  from X-axis is :       [SEBA 2017]

(a)  2     (b)  5        (c)  1       (d)  3

Solution:   (d) 3 units

Question : The ratio in which the -axis divides the line segment joining the points  and ( is :

(a)  1 : 2      (b)  3 : 2      (c)  2 : 1      (d) 2 : 3

Solution: (a)  1 : 2  .

[ Let the ratio is .

Here ,   , ,    and    . 

Given, -axis , i.e.,  . 

A/Q,   

  ]

Question :  The mid-point of the line segment joining the points and  is  , then  is :   [SEBA 2016]

(a)   – 4          (b)   – 12       (c)  12        (d)   – 6   

Solution:  (b) – 12                   

 [ We know that, the coordinates of the mid-point  of the join of the points and  is  .

A/Q,   

   ]

Question :  The distance between the point  and  is : [SEBA 2021]

(a)            

(b)         

(c)        

(d) 

Solution:  (c)    .   

[ Using the distance formula , we have

 

 

 

  unit ]

Question: The point which divides the line segment joining the points  and in ratio internally lies in the –

 (a)  quadrant     (b)   quadrant     (c)  quadrant     (d)   quadrant

Solution:  (c)  quadrant     [ Here,  ,   ,  ,  ,  , 

Using  section,

  and

  The point is  . ]

Question : The distance between the points P and Q is : [ CBSE 2020 Basic]

 (a)   units      (b)  units     (c)     units     (d) 40 units

Solution:  (c)    units           

[    Using the distance formula , we have

 

 units     ]

Question :  The mid-point of the line segment joining the points  and is : 

(a)    (b)     (c)    (d)

Solution: (d)

[  We know that  ,

 

Therefore, the mid-point of the line segment is  .  

Question :  If   is the mid-point of the line segment joining  and  ,then is :

(a)         (b) 1      (c) 2       (d)   

Solution:  (a)        

[  Here  , , , ,, ,

We know that ,

  ]

Question : The distance of a point  from the origin is (in units) :

(a)      (b)    (c)       (d)

Solution:  (b)  

[ Given , the distance of the point  and  is

  

  units ]

Question: The distance between the points  and is (in units) :

(a) 36    (b) 40    (c) 64    (d) 39

Solution:   (d) 39  

[  Given , the distance of the point  and  is

 

 

 

  units ]

Question : The line segment joining the points  and  is divided by P such that , then the ratio of   is :

 (a)  4 : 3             (b) 3 : 2          (c) 2 : 3          (d)  3 : 4

Solution:  (d)  3 : 4    

 [ We have, 

  ]

Question : The point on the x-axis which is equidistant from  and  is :[ CBSE 2020 Standard ]

(a)         (b)         (c)          (d)   

Solution:    (d)    .

 [ Since the point  is equidistant from  and  

 So,  

 Therefore, the point is  . ]

Question: The centre of a circle whose end points of a diameter are   and  is : [ CBSE 2020 Standard ]

(a)       (b)     (c)        (d) 

Solution:   (c)      .                                  

[ Let the point  is the midpoint of   and  .

A/Q, 

   

  ]

Question : If the distance between the points  and  is 5 , then the value of is :  [2017D] 

  (a) 4        (b)       (c)      (d) 5

Solution :  (c)  

[ Given, the distance between the points  and  is 5 .

A/Q,  

   ]

Question : The perimeter of a triangle with vertices  , and is :  [2014 F] 

(a)  6 units      (b)  10 units    (c) 12 units    (d) 14 units 

Solution:  (c) 12 units

[ Let  , and  are the vertices of the triangle.

The perimeter of 

 

 

 units ]

Question : If the points  and  lie on the y-axis , then the distance of CD is :

(a)  units     (b)  8  units    (c)  3 units     (d)  5 units

Solution:   (d)  5 units .

[  The distance  units ]   

Question : The middle point of the line segment joining the points  and  is , then the value of  is :

 (a)  – 8         (b)  1        (c)  7        (d)  8

Solution: (d)  8  

  [We know that ,

  ]

Question: If the distance between the points  and  is 5 , then  is  .

(a)  5        (b)  0       (c)     (d) 25     

Solution:  (b)  0             

 [ Since the distance between the points and  is 5

  A/Q ,   

   ]

 Class 10 Maths Chapter 7. Coordinate Geometry  Filled in the blanks

Question :  The coordinates of the point which divides the join of and  in the ratio  is  .

Solution:       .

  [ Here,   ,   , ,   and   

       

 and          ]

Question : If the coordinates of one end of a diameter of a circle are  and the coordinates of its centre are  , then the coordinate of the other end of the diameter is  .    [CBSE 2012]

Solution:    .                                             

[ Since the point  is the midpoint of   and  .

 A/Q ,     

             and    

       

                            ]

Question : The point which lies on the perpendicular bisector of the line segment joining the points  and  is  .

Solution:    .              

[ let  the point  is the midpoint of   and  .

A/Q ,     

Question : If P and Q be the points of trisection of the line segment joining the points and  such that P is nearer to A , then the ratio of   .

Solution:   2 : 1

[ The ratio of the points  and  is  2 : 1 .  ]

Question : If the distance between the points  and  is 5,then  is .

Solution:   0       

[ Since the distance between the points  and  is 5 .

 A/Q ,    

 

 

 

 

      ]

 Question : The line segment joining  and  is divided by the -axis , then the ratio is   .

Solution:     1 : 1      

 [ Given, -axis , i.e.,  . 

 A/Q,       

 

 

 

 

   ]

Question :  If the points   are collinear , then the value of  is  .   [ CBSE 2014]

Solution:    – 63   

 [  Here ,  ,    ,  ,    ,    ,  

We know that ,  

  

  

       ]

Class 10 Coordinate Geometry 2 Marks Questions and Answers  SECTION = B

Question :  Find the values of  for which the distance between the points  and is 10 units .

Solution : We have ,

 

 

 

 

 

 

 

 

 

   or

 So, the value of  are – 9  and 3 .

Question : Find the point on the -axis which is equidistant from  and  . [SEBA19]

Solution:  Let   is equidistant from  and  .

 According to question,  

 

 

 

 

   

 Therefore , the point is  .

Question : In what ratio does the point (– 4, 6) divide the line segment joining the points A(– 6, 10) and B(3, – 8)?

Solution: Let the ratio is

Here, ,  ,, ,, 

Using section formula,  

    and    

Now,  

       

Therefore, the ratio is  .

 Class 10 Coordinate Geometry 3 Marks Questions and Answers  SECTION = C

Question : Show that the points (1, 7), (4, 2), (–1, –1) and (– 4, 4) are the vertices of a square.

Solution : Let A(1, 7), B(4, 2), C(–1, –1) and D(– 4, 4) be the given points.

Using distance formula , we have 

 

 

   

So, and

Thus , ABCD is a square .

Question : Find a point on the y-axis which is equidistant from the points A(6, 5) and B(– 4, 3).

Solution : Given, the point on the x-axis .

Let the point be P( ) .

A/Q , 

   

Therefore, the point is (0 , 9) .

Question :  Check whether  and  are the vertices of an isosceles triangle .

Solution : Let  and  are the vertices of any triangle respectively .

Using distance formula , we have

 units   

 units   

 units   

 So,  

Therefore ,the points  and  are the vertices of an isosceles triangle .

Question :  Find a relation between and such that the point is equidistant from the point  and .

Solution : Given ,the point  is equidistant from the point and  .

 A/Q,

        [Squaring both side]

   

Question : Find the value of k if the points and  are collinear.

Solution:   Here, ,

We know that ,

Therefore, the value of k is 4 .

Question :  Find the ratio in which the line segment joining the points  and  is divided by  .

Solution:  let , the ratio be  .

Here, , ,

Using section formula , we have

  and 

Therefore, the ratio is 2 : 7 .

Question :  Find the ratio in which the line segment joining  and is divided by the -axis . Also , find the coordinates of the point of division .

Solution: let , the ratio be   and the coordinate is  .

Here,  , 

Using section formula , we have

and

Now,    

 

Again,

Therefore, the ratio is 1 : 1  and the coordinate is  .

Question :  If  is equidistant from  and  , find the values of  . Also find the distance QR and PR .

Solution : Since  is equidistant from  and  .

A/Q, 

 

The distance of  and  is

 units

The distance of  and  is

 units

The distance of  and  is

 units

The distance of  and  is

  units

Question : The -coordinate of a point P is twice its -coordinate . If P is equidistant from   and  , find the coordinates of P .   [2016D]

Solution : Let the coordinate of the point P is  .

Given, the -coordinate of a point P is twice its -coordinate , i.e.,   .

A/Q,    

 

 

  

     

 

 

     

             .

So, the coordinate of the point P is  .

Question :  Prove that the points  ,  and  are the vertices of a right angled isosceles triangle .  [CBSE 2016]

Solution:  Let the points  ,  and  are the vertices of the triangle.

   units

 units

 units

So, ABC is an isosceles triangle .

 Therefore,  units and   units

 So, ABC is a right angled isosceles triangle .  Proved.

Question : If   , ,  and  are the vertices of a parallelogram taken in order, find  and  .

Solution:  We know that diagonals of a parallelogram bisect each other .

    So, the coordinates of the mid-point of AC = the coordinates of the mid-point of BD .

 

                 and      

                         

                                  

      and      

Question : Find the value of  if the points  ,  and  are collinear .

Solution:   Here ,  ,   ,   ,   ,   ,

 We know that ,

  

  

  

Question : If the distance of  from  and  are equal , then prove that  .

Solution: Given , the distance of  from  and  are equal .

A/Q ,   

 

 

 

   Proved.

Question : Find a relation between  and  such that the point  is equidistant from the point  and  .

Solution: Given ,the point  is equidistant from the point  and  .

A/Q ,     

        [ Squaring both side]

 

  

Question : If A ,  , C  and D are the vertices of a quadrilateral ,find the area of the quadrilateral ABCD .

Solution:   Since  A ,   ,   and  are the vertices of quadrilateral ABCD .

Join BD and we find ABD and BCD are two triangle .  

    sq. unit

      and   

    sq. unit

 Therefore, area of

   Sq.units   sq. unit

Question : Find the ratio in which the point   divides the line segment joining the points  and   . Also , find the value of  . [CBSE 2016]

Solution :    let  the ratio is  .  

  Here,    ,  ,   ,   ,    and   

Using section formula , we have

 

 

  

 

   

 and             

 Therefore, the ratio is 2 : 1  and the value of  is   .

Question : Find the ratio in which the -axis divides the line segment joining the points and   . Also, find the point of intersection .

Solution:  let the ratio is   and the coordinates of the point is   .

 Here ,     ,    ,     ,   

Using section formula ,  we have

 

  

 

 

                  

and      

           

Therefore, the ratio is 5 : 1 and the coordinates of the point is    .

Question : Find the ratio in which the point of intersection of the -axis and the line segment which joins the points  and  internally divides the line segment . Also, find the coordinates of the point .  [SEBA 2014]

Solution:  let the ratio is   and the coordinates of the point is   .

 Here ,    , ,    ,   

 Using section formula ,  we have

 

  

 

 

                   

 and       

       

 Therefore, the ratio is 5 : 7 and the coordinates of the point is   .

Question : Find the coordinates of a point A , where AB is the diameter of a circle whose centre is and   is  .

Solution: Here, AP = BP = Radius . So,

Let the coordinates of a point  .

 ,  

Using the section, we have

 

and

Therefore, the coordinate of the point  .

Question: If A and B are  and  , respectively, find the coordinates of P such that  and P lies on the line segment AB .

Solution:  let the coordinates of the point P is  .

And  

Here, , , 

Using section formula , we have

and 

Therefore, the coordinate of the point P is  .

Question : Determine the ratio in which the line  divides the line segment joining the points A and B  . Also, find the coordinate of the points .

Solution:  let the ratio is   and given the coordinate is  .

      Here,    ,    ,    and  

 Using section formula, We have

   

 and        

 A/Q  ,       

 

  

 

 

 

 

    

Here, m = 2 , n = 9

      

and       

 Therefore, the ratio is 2 : 9  and the coordinate of the point is  .

Question : If A , B , C and D are the vertices of a quadrilateral ABCD of area 80 Square units , then find positive value of   .

Solution:  Given, ABCD be a quadrilateral and BD join .

 

      ar()

   

 

    Sq. units (positive value)

and   ar()

  

 

    

 

  sq. units           (positive value)

 A/Q ,     

 

 

   

 Therefore, the positive value of  is 8 .

 Class 10 Coordinate Geometry 4 Marks Questions and Solutions                                                     

SECTION = D

Question : In figure 6,  ABC is a triangle coordinates of whose vertex A is  . D and E respectively are the mid-points of the sides AB and AC and their coordinates are  and respectively . If F is the mid-point of BC , find the areas of and  .

  

Solution:  let  and  are the coordinates of the triangle ABC .

 

   Since D be a mid-point of AB .  So ,  

              

and        

   

Since E be a mid-point of AC .  So ,  

                

 and       

 

   

 Therefore, the coordinates of triangle B and C are  and   .

 The vertices of the triangle ABC are  ,  and  .

 

 

      sq. unit

  Again , F is a mid-point of BC , then the coordinate of F is    ,i.e. (1 , 2) .

The vertices of the triangle DEF are  , and  .

  

     sq. unit ( Area always positive)