• Dispur,Guwahati,Assam 781005
  • mylearnedu@gmail.com

8. INTRODUCTION TO TRIGONOMETRY (SCERT)

SEBA Class 10 Maths 8. INTRODUCTION TO TRIGONOMETRY (NCERT)

Chapter 8. Introduction to Trigonometry

Class 10 Maths Chapter 8. Introduction to Trigonometry Exercise 8.1 Solutions

1. In , right-angled at B ,  . Determine:   (i)  sinA  , cosA   (ii)  sinC , cosC

Solution :  Here , AB=24 cm , BC=7 cm

In∆ABC, we have

 

 

 

 

 

(i)    and

(ii)    and

2. In Fig. 8.13, find  . 

Solution : Here, PQ=12 cm  , PR=13 cm  

In∆PQR , we have

    

 

 

 

 

    

 Now ,  

and

3. If   , calculate cosA and tanA .

Solution :  Given 

let

 

 

In∆ABC , we have

  

 

 

 

and

4. Given  , find sinA and secA .

Solution :  Given,

Let, 

 

 In∆ABC , we have

  

 

 

 

 

and

5. Given  , calculate all other trigonometric ratios .

Solution :  Given,

Let  

 

In∆ABC , we have

  

 

 

 

 

and

6. If  and  are acute angles such that , then show that  .

Solution :  Given, 

      

So, ABC is an isosceles triangle .

          proved .

7. If  , evaluate : (i)         (ii)

Solution: Given,

Let, 

 

In∆ABC , we have

 

 

 

 

and

(i) We have,

(ii) We have,

 8. If  , check whether  or not .

Solution: Given ,

Let, 

 

In∆ABC , we have

 

 

 

 

 

LHS:  

RHS :

  

9. In triangle ABC, right-angled at B , if   , find the value of : (i)  (ii)  

Solution : Given, 

Let 

 

In∆ABC , we have

 

 

 

 

 

(i) We have,

(ii) We have,

10. In , right-angled at Q,  and . Determine the values of and  .

Solution :  Here , 

  and   

   In  , we have

 

 

 

 

 

 

    

     

 

11. State whether the following are true or false . Justify your answers  :

(i) The value of tanA is always less than 1 .

(ii)   for some value of angle A.

(iii)  cosA is the abbreviation used for the cosecant of angle A .

(iv)  cotA is the product of cot and A .

(v)    for some angles θ .

Solution:  (i)  False ,because the value of tanA is not always less than 1. For example : .

(ii) True , because the hypotenuse is the longest side in a right triangle,

     then the value of secA is always greater than or equal to 1 .

(iii) False, because cosA is the abbreviation used for the cosine of angle A .

(iv) False , because cotA is the ratio of base and perpendicular of the right triangle .

(v) False , because the hypotenuse is the longest side in a right triangle, then the value of sinθ is always less than 1 .

 Class 10 Maths Chapter 8. Introduction to Trigonometry Exercise 8.2 Solutions

1. Evaluate the following : (i)  (ii)  (iii)       (iv)     (v)  

Solution :  (i) We have,

 

(ii)  We have,

(iii) We have,  

(iv)  We have,

 (v) We have, 

2. Choose the correct option and justify your choice  : (i)  

 (A)             (B)        (C)      (D)

Solution: (A)            

[Hint:  We have,

]    

(ii)

(A)    (B)  1      (C)     (D)  0

Solution: (D)  0

[ Hint:  We have,:

]

(iii)  is true when  

  (A) 0°          (B) 30°         (C) 45°          (D) 60°

Solution : (A)  0°

[ Hint: Putting 

LHS : 

RHS :   ]

(iv) 

(A)    (B)    (C)   (D)

Solution : (C)  

[ Hint: We have,

]

3. (i) If   and ,find and .

Solution :  We have,

 

and

 

  

Putting  in equation  , we have

      

 

   

Therefore , the value of A and B are 45° and 15° respectively .

(ii) If  , and  , then find and  .

Solution:  We have, 

 

 

and  

 

 

Putting  in (i) , we get

 

 

Therefore, the value of  and  .

4. State whether the following are true or false . Justify your answer .

(i)  sin(A+B) = sinA+sinB

 (ii) The value of sinθ increases as θ increases .

(iii) The value of cosθ increases as θ increases .

(iv)  sinθ = cosθ for all values of θ .

(v)  cotA is not defined for A = 0°

Solution :  (i) sin(A + B) = sinA + sinB

False , Because if you are putting the value of A and B then both sides are not equal .

 (ii) The value of sinθ increases as θ increases .

(ii)  True , because the value of sinθ increases asθ increases .

(iii) False , because the value of cosθ increases as θ increases .

      [ i.e., the value of cosθ increases as θ decreases .]

(iv) False , only for θ=45° is equal and other value of θ is not equal both sides .

(v) True, because the value of  A=0° is not defined for cotA .

Class 10 Maths Chapter 8. Introduction to Trigonometry Exercise 8.3 Solutions

1. Evaluate : (i)    (ii)    (iii) (iv)

Solution : (i) We have,

(ii) We have ,

(iii) We have,

(iv) We have,

2. Show that :

(i)    

(ii)   

Solution :

(i) LHS : 

 

 

 

    RHS

(ii)   LHS : 

 

 

 

    RHS  

3. If   where  is an acute angle , find the value of A .

Solution: We have,

 

Since 90° – 2A  and A – 18° are both acute  angles .

     

   

 

 

Therefore, the value A is 36° .

4. If tanA = cotB , prove that  .

Solution:  Given,  

   

Since A and  are both acute angles .

  

  Proved .

5. If  where 4A is an acute angle, find the value of A .

Solution : We have,

 

Since  and  are both acute  angles .

  

  

     

Therefore, the value A is 22° .

6. If A , B and C are interior angles of a triangle ABC , then show that .

Solution :  Since, A , B and C are interior angles of a triangle ABC respectively .

7. Express  in terms of trigonometric ratios of angles between 0° and 45° .

Solution :  We have ,

 

 

8. (i) If  , where is an acute angle , then find the value of  .

Solution: We have, 

 

Since,  and  are both acute angles .

So, 

 

 

 

 

Therefore, the value of  is 21° .

(ii)  If . Find the value of  .

Solution :  We have ,

  

Since,   

Therefore, the value A is 57° .

(iii) If , where  , then find the value of .

Solution : We have,

 

Since, 

So,  

   

 

 

 

Therefore, the value of A is 35° .

(iv) If  , then find the value of  .

Solution : We have,

  

Since,  and are both acute angles

So, 

 

    

    

  

Therefore, the value of  is 14° .

Class 10 Maths Chapter 8. Introduction to Trigonometry Exercise 8.4 Solutions

1. Express the trigonometric ratios sinA , secA and tanA in terms of cotA  .

Solution : We know that ,

 

and

2. Write all the other trigonometric ratios of in terms of secA .

Solution : We have ,

and 

3. Evaluate : (i)        (ii)

Solution: (i) We have ,

             

(ii) We have, 

 

 

 

 

4. Choose the correct option . Justify your choice .

(i)  

 (A)  1        (B) 9        (C) 8        (D)  0

Solution: (B) 9

[ hints : 

  ]

(ii)

   (A) 0       (B)  1      (C)   2       (D) 

Solution:  (C)  2

[Hints:  We have ,

  ]

(iii)   

     (A)      (B)      (C)      (D)      

Solution:  (D) cosA

[ Hints: We have,

  ]  

(iv)   

(A)        (B)         (C)        (D)

Solution: (D)  

[ Hints:  We have ,

  ]

5. Prove the following identities , where the angles involved are acute angles for which the expressions are defined .

 (i)   

Solution : (i)   L.H.S :

  =  R.H.S   Proved.

(ii)  

Solution: L.H.S :

= R.H.S.    Proved.

(iii)  

 [Hint : Write the expression in terms of sinθ and cosθ]

Solution :  L.H.S : 

= R.H.S.  Proved

(iv)  

 [Hint : Simplify LHS and RHS separately]

Solution:  L.H.S :

RHS : 

LHS = RHS    Proved

(v)  , using the identity  .

Solution: LHS : 

   RHS   Proved.

(vi) 

Solution : LHS : 

  = RHS Proved

(vii) 

Solution : L.H.S. :

= R.H.S.  Proved .

(viii)    

Solution :  L.H.S.  :

 

       R.H.S     Proved.

(ix) 

 [ Hint :Simplify LHS and RHS separately ]

Solution: LHS :

RHS : 

LHS = RHS   Proved .

(x) 

Solution:   First part : 

 Second part : 

      First part = Second part = Third part .  Proved.

6. Prove that :

(i) 

Solution:  LHS : 

  RHS  Proved.

 ii) 

Solution:  LHS : 

  RHS   Proved.

(iii)  

Solution:  LHS : 

  RHS    Proved.

(iv) 

Solution : LHS 

 RHS   Proved.

(v)  

Solution : LHS : 

 RHS    Proved.