. The domains and Ranges of inverse trigonometric Function :
Function |
Domain |
Range |
|
[– 1 ,1 ] |
|
|
[– 1 , 1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
. Properties of Inverse Trigonometric Functions :
1.
2.
3.
4.
5.
6.
7. , or
8. or
9. or
10. or
11.
12.
13.
14.
15.
16.
17. or x≥1
18. x≤1 or x≥1
19.
20.
21.
22.
23.
24.
25.
27.
28.
29.
30.
31.
32.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
Find the principal values of the following :
Q1.
[ Note: ]
Solution: We have,
Q2.
[ Note: ]
Solution: We have,
Q3.
Solution: We have,
[ Note: ]
Q4.
Solution: We have,
[ Note: ]
Q5.
Solution: We have,
[ Note: ]
Q6.
Solution: We have,
[ Note: ]
Q7.
Solution: We have,
[Note: , or ]
Q8.
Solution: We have,
[ Note: ]
Q9.
Solution: We have,
[ Note: ]
Q10.
Solution: We have,
[ Note: ]
Find the values of the following :
Q11.
Solution: We have,
Q12.
Solution: We have,
Q13. If , then
(A) (B) (C) (D)
Solution: We have, ;
Correct Answer: (B)
Q14. is equal to
(A) (B) (C) (D)
Solution: We have,
Correct Answer: (B)
Prove the following :
Q1.
Solution: Let and
We know that,
Now,
Proved.
Q2.
Solution: Let and
We know that,
Now,
Proved.
Q3.
Solution: LHS :
R.H.S. Proved.
Q4.
Solution: LHS :
Write the following functions in the simplest form :
Q5.
Solution: We have,
Let and
Q6.
Solution: We have,
Let and
Q7.
Solution: We have,
=
Q8.
Solution: We have,
Q9.
Solution: We have,
Let
and
=
Q10.
Solution: We have,
Let and
Find the values of each of the following :
Q11.
Solution: We have,
Q12.
Solution: We have,
Q13. and
Solution: We have,
Q14. If , then find the value of .
Solution: We have,
Therefore, the value of is
Q15. If , then find the value of .
Solution: We have,
Find the values of each of the expressions in Exercises 16 to 18 .
Q16.
Solution: We have,
Q17.
Solution: We have,
Q18.
Solution: We have,
Q19. is equal to
(A) (B) (C) (D)
Solution: (B)
[ We have,
]
Q20. is equal to
(A) (B) (C) (D) 1
Solution: (D) 1
[ We have,
]
Q21. is equal to :
(A) (B) (C) 0 (D)
Solution: (B)
We have,
Find the value of the following :
Q1.
Solution: We have,
Q2.
Solution: We have,
Prove that :
Q3.
Solution : LHS :
Let
RHS Proved .
Q4.
Solution:
[ Note :
; ]
LHS :
RHS Proved.
Q5.
Solution:
[ Note :
; ]
LHS :
RHS
LHS = RHS Proved.
Q6.
Solution:
[ Note: ]
LHS :
[ Note : ]
RHS
LHS = RHS Proved.
Q7.
Solution: RHS :
Let
Let and
LHS Proved.
Q8.
Solution:
LHS :
RHS
LHS = RHS Proved
Prove that :
Q9.
Solution:
LHS :
RHS
LHS = RHS Proved.
Q10.
Solution: LHS :
RHS
LHS = RHS Proved.
Q11.
[Hint : Put ]
Solution :
Let and
LHS:
=
RHS
LHS = RHS Proved .
Q12.
Solution: LHS :
Let and
Now,
RHS
LHS = RHS Proved
Solve the following equations :
Q13.
Solution: We have,
Q14.
Solution: We have,
Q15. is equal to
(A) (B) (C) (D)
Solution: (D)
[We have,
Let
Now,
]
Q16. , then is equal to
(A) 0 , (B) 1 , (C) 0 (D)
Solution: (A) 0 ,
[ We have,
or
]
Q17. is equal to :
(A) (B) (C) (D)
Solution: (C)
[ We have,
=
]