• Dispur,Guwahati,Assam 781005
  • mylearnedu@gmail.com

10. Circles

Circles

Chapter 10. Circles

Class 10 Maths Chapter 10 Circles : Multiple Choice Questions , Answer following the Questions , Fill in the blanks , 2 Marks Questions , 3 Marks Question , 4 Marks Question and Solutions :  

Class 10 Circles Multiple Choice Questions and Solutions:

 SECTION = A

1. In the circle given in figure, the number of tangents parallel to tangent PQ is :    [CBSE 2020 basic]

  

 (a) 0                       (b) 1                     (c) 2                    (d) many

Solution:  (a)  1

2. In figure, from an external point P, two tangents PQ and PR are drawn to a circle of radius 4 cm with centre O . If  QPR = 90° , then length of PQ is :     [CBSE 2020 standard]

  

   (a) 3 cm                 (b) 4 cm                 (c) 2 cm                (d) 2 cm

Solution:    (b) 4 cm                

                 [ Since  OP is the angle bisector of  .

                        

                   In  we have ,

                       

                   

                      

        So, OPQ is an equilateral triangle .

                cm           ]

3. In figure, AB is a chord of the circle and AOC is its diameter such that  ACB = 50° . If AT is the tangent to the circle at the point A , then  BAT is equal to :               

   

 (a) 65°                      (b) 60°                       (c) 50°                  (d) 40°    

Solution:     (c)  50°   

               [ Since AC perpendicular to AT .

                       In  we have ,                 

                        So ,   

                             

                      But ,      

                                  

3. From an external point P, tangents PA and PB are drawn to a circle with centre O . If   , then   is :

 

             (a)  30°                    (b)  35°              (c)   45°                   (d)  25°  

Solution:     (d)  25°    .

           [ Since APB is an equilateral triangle .

             So,      

                        [    ]

                       

                        

                 But     

                                   ]

4. In figure, if O is the centre of a circle, PQ is a chord and  the tangent PR at P makes an angle of 50°  with PQ , then POQ is equal to :        

  

 (a) 100°                 (b) 80°                 (c) 75°                 (d) 90°  

Solution:    (a) 100°  

                [  Since OP is perpendicular to PR .

                                     

                                

                       POQ is an equilateral triangle .            

                        

                 ⇒40°+40°+∠POQ=180° 

                 ⇒∠POQ=180°-80°=100°       ]

5. In a right triangle ABC , right-angled at B , BC   cm and AB  cm . The radius of the circle inscribed in the triangle (in cm) is  :

                        (a)  4             (b)  3                      (c)  2                         (d)  1

Solution:

6. In figure, O is the centre of a circle . PT and PQ are tangents to the circle from an external point P .If   , then the measure of    is :

  

 (a)                            (b)                        (c)                           (d)

Solution:    [ ]

7. A chord of a circle of radius 10 cm subtends a right angle at its centre . The length of the chord is :

(A)    cm            (B)    cm                      (C)     cm                            (A)  cm

Solution:

8. In figure, PQ is a chord of a circle and PT is the tangent at P such that QPT = 60° .Then PRQ is equal to :

                                         

    (A) 135°                    (B) 150°                   (C) 120°                   (D) 110°

Solution:   [ ]

9. In figure, PQ is a tangent at a point C to a circle with centre O . If AB is a diameter and , then  is :  [ CBSE 2016 ]

     (A)                 (B)                   (C)             (D)

Solution:  

10. In figure, PQ is tangent to the circle with centre at O , at the point B .If AOB = 100° , then ABP is equal to :  [ CBSE 2020]

    

   (a) 50°                            (b)  60°                     (c) 40°                   (d) 80°

Solution:   (c)  40°

            [ Since AOB is an equilateral triangle

          

                        

                    

                   

        But  ∠ABP+∠OBA=90°

             ⇒∠ABP=90°-50°  

             ⇒∠ABP=40°       ]

   Class 10 Circles 3 Marks Questions and Solutions:  

SECTION = C

Q1.  Prove that the lengths  of tangents drawn from an external point to a circle are equal .

Solution:   Given O be a centre of the circle and a point P lying outside the circle and two tangents PQ , PR on the circle from P .

 To prove :    

Construction : We join ,  and  .

 Proof :   In  and    we have , 

                              ( Radius of the same circle)                                       

                               ( Common)               

                              [ OAAP and OBBP]

                               [  R.H.S rule]

                                         (C.P.C.P.)   Proved.

Q2. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact .  

Solution:  Given, a circle with centre O and a tangents XY to the circle at a point P .

       To Prove :  OP is perpendicular to XY .

   Construction : we draw a point Q on XY other than P and join OQ .

  Proof :  The point Q must lie outside the circle .

               Therefore , OQ is longer than the

                radius OP of the circle .  i.e. , OQ > OP

                           

   Every point on the line XY except the point P , OP is the shorter of all the distance of the point O to the points of XY . So, OP is perpendicular to XY .

 Class 10 Circles 4 Marks Questions and Solutions:

SECTION = D

Q1.  Two tangents TP and TQ are drawn to a circle with centre O from an external point T . Prove that  .

Solution:  Given, O be a centre of a circle and an external point T and two tangents and  to the circle , where P and Q are the points of contact  .

To prove :    

Proof :  Since the length of tangents drawn from an external point to a circle are equal .

                           i.e. ,  

         

              In   , we have 

                         

         and     

      So ,        [   OPPT ]

           

         

              In we have ,    

                             

                              

                                  [ From  ]

                             

                           Proved

Q2. Prove that the parallelogram circumscribing a circle is a rhombus .

Solution:  Given   be a parallelogram and its sides , , and are touch the circle at the points  ,  ,  and  respectively .

To Prove :   is a rhombus .

Proof : Since the lengths of tangents drawn from an external point to a circle are equal .

  

                    Therefore ,    (From A )……. 

                                           (From B )…….

                                          (From C )……. 

                                          (From D )…….  

             

                  

                   

       Since   be a parallelogram . Thus,  and 

    So ,  

                               

                       Therefore,   is a rhombus.

Q3. From a point T outside a circle of centre O, tangents TP and TQ are drawn to the circle .Prove that OT is the right bisector of the line segment PQ .

Solution:   Given , O be a centre of a circle whose two tangents are TP and TQ .

     To Prove : OT is the right bisector of the line segment PQ .

     Proof :       InOPT and OQT , we have

                     OP = OQ                    [ Radius of the circle] 

               OPT = OPQ  = 90°   [   OPTP and OQ TQ ]

                    OT = OT                     [ common side]

       

                  OPT  OQT               [ R.H.S]

                     POM = QOM              [ C.P.C.T]

                 InOPM and OQM , we have

                            OP = OQ                    [ Radius of the circle]  

                      POM = QOM             [  Given ]

                           OM = OM                     [ common side]

                      OPM  OQM               [ S.A.S]

                 PM = QM  and OMP = OMQ   [C.P.C.T ]

                   OMP + OMQ = 180°    [ linear pair of angle ]

             OMP + OMP = 180°

             OMP  = 180°  OMP     90°   OMP = 90°   

          OT is the right bisector of the line segment PQ .  Proved .

Q4.  In figure , a triangle PQR is drawn to circumscribe a circle of radius 6 cm such that the segments QT and TR into which QR  is divided by the point of contact T ,are of lengths 12 cm and 9 cm respectively .If the area of PQR   square cm , then find the lengths of sides PQ and PR . 

  

Solution: