• Dispur,Guwahati,Assam 781005
  • mylearnedu@gmail.com

3. Pair of Linear Equations in Two Variables

Pair of Linear Equations in Two Variables

 Chapter 3. Pair of Linear Equations in Two Variables    

Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables  Multiple Choice Questions , Answer following the Questions , Fill in the blanks , 2 Marks Questions , 3 Marks Question , 4 Marks and Solutions :                                           

   Class 10 Pair of Linear Equations in Two Variables  Multiple choice Questions and Answers

  SECTION = A

Q1. Consider the following pairs of linear equations : [SEBA 2020]

(i)       ;      

(ii)      ;    

Choose the correct alternative :

(a) The pair in (i) has no solution, whereas the pair in (ii) has unique solution .

(b) The pair in (i) has infinitely many solutions, whereas the pair in (ii) has no solution .

(c) The pairs in (i) and (ii) have no solutions .

(d) The pair in (i) has no solution, whereas the pair in (ii) has infinitely many solutions .

Solution :  (d) The pair in (i) has no solution, whereas the pair in (ii) has infinitely many solutions .

[ We have ,     and       ]

Q2. If the point   lies on the lines represented by both the equations and   , then the lines is :

(a)  intersecting                     

(b) coincident                   

(c)  Parallel                   

(d) None of these

Solution:  (a)  intersecting   .                  

[ We have ,   ]

Q3. The value of  for which the pair of linear equations  and represents parallel lines is :

(a)                               

(b)                          

(c)                               

(d)  

Solution:   (a)      .                       

[ We have ,   

 

 

         ]

Q4. Consider the following pairs of linear equations :[SEBA 2019]

(i)        , 

(ii)       ,   

Choose the correct alternative .

(a) The pairs in (i) and (ii) are consistent .

(b) The pairs in (i) and (ii) are inconsistent .

(c) The pair in (i) is inconsistent, whereas the pair in (ii) is consistent .

(d) The pair in (i) is consistent, whereas the pair in (ii) is inconsistent .

Solution:  (d) The pair in (i) is consistent, whereas the pair in (ii) is inconsistent .

[ We have ,      and      ]

Q5. If the lines and  are coincident , then the value of  is :

(a)                               

(b)                                 

(c)  – 11                            

(d)  – 7 

Solution:  (a)                    

[ We have ,            ]

Q6. If  ,  is the solution of the equations and  , then the values of  and  are respectively :

(a) 6 , – 1                             

(b) 2 , 3                       

(c) 4 , 1                       

(d)    ,  

Solution:   (c)  4 , 1              

[ Here ,      and   

We have ,  

 

and 

 

    from

  

From  , we get        ]

Q7. A pair of linear equations  ;    is said to be inconsistent, if

(a)                

(b)                  

(c)                 

(d)  

Solution:   (a)    2              

Q8. The graph of  is a line parallel to the - 

(a)  – axis              

(b)   – axis               

(c) both  – axis and   – axis            

(d) none of these

Solution:   (b)  – axis       .

Q9. The pair of linear equations   and   is  :  [CBSE 2020 standard]

(a) consistent                                                               

(b) inconsistent

(c) consistent with one solution                               

(d) Consistent with many solutions

Solution:  (b) inconsistent .

[ We have ,   

 

   

  and    

       ] 

Q10. The graph of  is a line :

(a) parallel to  – axis                             

(b) perpendicular to  – axis

(c) parallel to  – axis                           

(d) passing through the origin .

Solution:   (d) passing through the origin .

Q11. The lines representing the linear equations   and   are :

(a) intersect at a point                                

(b)  parallel  

(c)  coincident                                        

(d) intersect at exactly two points .           

Solution:   (b)  parallel  .

[ We have ,      ;      ]

Q12. The pair of equations  and   graphically represents lines which are :

(a) Coincident                                                        

(b) parallel 

 (c) intersecting at (3,4)                                         

(d) intersecting at (4,3)

Solution:  (d) intersecting at (4 , 3) .

Q13.  If  pair of linear equations is consistent , then the lines represented by them are :[CBSE 2020 (Basic)]

(a) always coincident                                         

(b) parallel 

(c) always intersecting                                       

(d) intersecting or coincident.

Solution:  (d) intersecting or coincident.

Q14. Which of the following pair of linear equations is intersect at a point ?

(a)    ,                      

(b)   , 

(c)    ,                  

(d)    , 

Solution:  (d)    ,     .

[ We have,   

So, the pair of linear equations is intersect at a point .  ] 

Class 10 Pair of Linear Equations in Two Variables  Fill in the blanks

Q1. If in the equation  , the value of  is 6, then the value of  will be   .

Solution:   – 2       

[ We have,  

     ]

Q2. If the line are parallel , then the pair of the pair of equation is   . [ consistent / inconsistent / dependent (consistent)]

Solution:  inconsistent    .

Q3. The value of  for which equationsand  has a no solution is  .

Solution:    6      

[ We know that, 

  

So,   

  ]

Q4. The solution of the pair of linear equations  and are   and   respectively.

Solution:  2  and   – 3  

[  We have,

and     

 {from (i)}

 

Putting  in equation  , we get      ]

Q5. If  and  is a solution of a pair of equations and  , then the value of  and  are  and   respectively.

Solution:  5  and 15  

[ Given ,  and  

So,      

and 

    ]

Q6. If a pair of linear equations  and  is dependent and consistent , then the situations can arise   .

      /     /        

Solution:      .

Q7.  10 students of class X took part in a Mathematics quiz . If the number of girls is 4 more than the number of boys , then the number of boys and girls who took part in the quiz are   and   .

Solution:   3  and  7  .

[ let  and  be number of girls an boys respectively .

A/Q ,    

And      

     From

 

From  , we get 

   ] 

Class 10 Pair of Linear Equations in Two Variables Answer following the question :

Q1. Find the value of  for which the given pair of linear equations has infinite many solutions :   ; 

Solution:  We have ,     and    

 

From  part and  part  , we get

       

Q2. On comparing the ratios    ,    and    , find out whether the lines representing the pairs of linear equations intersect at a point , are parallel or coincident :

      ;     

Solution:  We have ,     and    

 Here ,   ,    ,  ,  ,  ,         

    ,    and                  

Thus, the pairs of linear equations are parallel .

Q3. Find the value of  so that the point ,lie on the line represented by  .

Solution:  Here ,    ,  

We have ,  

Q4. Find the number of solutions of the following pair of linear equations :  [CBSE 2009]

       and  

Solution:  We have ,        and    

 Here ,     ,    ,   ,    ,   ,   

    ,    and                  

Thus, the pairs of linear equations are infinitely many solutions .

Q5. Write whether the following pair of linear equations is consistent or inconsistent :

    and     

Solution:   We have ,     ; 

       

     

  

Here ,    ,    ,  c1=6  ,   ,  ,   

       ,            

Thus, the pairs of linear equations is consistent .

Q6. Solve for  and   ( Using elimination method) :

     ;    

Solution:  We have , 

   

and 

 

From  we get ,

Q7. Which of the following pairs of linear equations has unique solution , no solution , or infinitely many solutions ?

    ;  

Solution:  We have,    and  

Here ,   ,   ,    ,   ,   ,  

       ,       and             

Thus, the pairs of linear equations has infinitely many solutions .

Q8. For what value of  does the pair of equations given below has a unique solution ?

   ;  

Solution:  We have ,    and

Here ,   ,   ,  ,   ,   ,  

     

 

 

      

Therefore, for all values of  , except    , the given pair of equations will have a unique solution . 

Class 10 Pair of Linear Equations in Two Variables 2 Marks Quesions and Answers :

SECTION = B

Q1. Five years ago, Nuri was thrice as old as sonu . Ten years later, Nuri will be twice as old as Sonu . How old are Nuri and Sonu ?

Solution:  let  and  be the age of Sonu and Nuri respectively .

Five years ago , the age of Sonu and Nuri will be  and  years respectively .

And  Ten years later , the age of Sonu and Nuri will be  and  years respectively .

 A/Q , 

 

   

  and         

    

      [ From  ]  

  

    

From  we get ,  

Therefore , 20 years and 50 years are the age of Sonu and Nuri respectively .

Q2. Solve :      ; andhence find the value of  for which  .

Solution:  We have , 

 

And   

From  we get  

Q3. In a   ,  . Find the three angles .

Solution:  Given,   

 and   

 

      

  In  , we have   

  

  

  

      

  ,    ,  

Q4. The difference between two numbers is 26 and one number is three times the other . Find them.

Solution:  let  and  be the two number .

 A/Q ,      

  

 And  

    [ From  ] 

 

    

From  we get  ,  

 

Therefore , the two numbers are  39 and 13 respectively .

Q5. Half the perimeter of a rectangular garden, whose length is 4 m more than its width, is 36 m . Find the dimensions of the garden .  [SEBA 2019]

Solution:   :  let  and   (in metres) are the length and width of the rectangular garden respectively .

A/Q ,   

 

And   

   [ From  ]

  

From  we get  ,

 

Therefore,  20 m and  16 m are the length and width of the rectangular garden respectively .

Q6. For what value of  will the following pair of linear equations has infinitely many solutions : ;  

Solution:  We have ,    ;  

Here ,    ,   ,    ,    ,   ,               

         

 

From 1st part and 2nd  part , we get

  

         

From 2nd  part and 3rd part , we get

  

 

 ,   

Therefore , the value of  is 6  .

Q7. If the sum of two positive numbers is 44 and one number is three times the other number, then find the numbers.

Solution :  Let  and   be the first and second numbers respectively .

 AQ ,   

 

 and

 

Putting  in equation  , we get 

Therefore, the two positive number are 33 and 11 respectively .

Q8. Solve  for x and y :     ;      [CBSE 2011]

Solution:  We have ,      

and      

 

 

 

 

  

  

Therefore, the value of  and  are 3 and 2 respectively .

Q9. Solve the following pair of equations by substitution method :      ; 

Solution:  We have ,  

  

and 

       

Putting     in equation   we get ,   

 

            

Therefore , the solution are  and

Q10. Use elimination method to find all possible solution of the following pair of linear equations : ;  

Solution:  We have , 

 

    

 and     

 

  , which is a false statement .

Therefore , the pair of linear equations has no solution . 

Q11. Given the linear equation  , write another linear equation in these two variables such that the geometrical representation of the pair so formed is : (i) intersecting lines  (ii) parallel lines

Solution:   Given the linear equation is  

(i) For intersecting lines ,   

Then, the another linear equation is  .

(ii)  For parallel lines ,  

Then , the linear equation is  .

Q12. Graphically , find whether the following pair of equations has no solution, unique solution or infinitely many solutions :    ;     

Solution:  We have ,   

 and

 

         

 

Equation  and  are same . Hence , the lines represented by equation  and  are coincident .

Therefore , equation  and  have infinitely many solutions.

Q13. Solve x and y :     ; 

Solution:  We have ,

     

and   

 

 

 

 

 

 

 

Therefore, the value of   and  are 2  and 1  respectively .  

Q14. 5 pencils and 7 pens together cost Rs. 50 , whereas 7 pencils and 5 pens together cost Rs. 46 .Find the cost of one pencil and that of one pen .   [SEBA 2020]

Solution:  let  and  be the cost of one pencil and one pen respectively .

A/Q , 

  

 

From  we get ,  

 

 

Therefore , the cost of one pencil and one pen are Rs. 3 and Rs. 5 respectively .

Class 10 Pair of Linear Equations in Two Variables 3 marks questions and Answers 

SECTION = C

Q1.  Solve the pair of equations :    [CBSE 2020 standard]

         ;        

Solution:   We have,     

  13  

 

and                              

  

let,      and      

                

 

 

 

Putting  in equation  , we have 

  

       and  

             

Therefore, the solutions are :     and  

Q2. Solve the following pairs of equations by reducing them to a pair of linear equations :

           ;           

 Solution:     We have , 

           ;            

let ,         and        

 

and    

   

From   we get ,   

 

   

  

 

and     

 

   

Therefore, the value of  and  are 4 and 9 respectively .

Q3. Solve for  and    :

       ;   

Solution:  We have,

 

 

 

  

  and  

 

 

 

 

  

 

 

From  we get ,   

 

 

 

 

   and     .    

Q4. Solve the following pairs of equations :  

       ;       ,   

Solution :   Let    

             

and    

 

 

Putting    in equation  , we get

   

 

    

   

Hence,   and   are the required solution of the given pair of equations .  

Q5. A fraction becomes  when 1 is subtracted from the numerator and it becomes   when 8 is a added to its denominator . Find the fraction .  [CBSE 2020]

Solution :  Let  and  be the numerator and denominator of the fraction respectively .

So, the fraction is     .

 A/Q,  

 

  

 and     

 

  

 

 

Putting  in equation  , we get    

 

 

 

Therefore, the fraction is    .

Q6. A fraction becomes   , if 2 is added to both the numerator and the denominator . If 3 is added to both the numerator and denominator it becomes  . Find the fraction . [ SEBA 2016 ,20]

Solution :  let,  and  are the numerator and the denominator of the fraction respectively .

 Therefore, the fraction is   .

  A/Q ,     

 

    

 

 

and       

 

 

 

Putting   in equation  , we get

  

 

 

 

     

 Required the fraction is    .

Q7. Solve for  and   :  [CBSE 2004 , 07C , 08]

 

  

Solution:  We have ,

  

  and  

 

 

   

   

  Putting  in equation  , we have

  

 

 

  

Therefore, the solutions are  and      .

 Class 10 Pair of Linear Equations in Two Variables 4 marks Questions and Answers

SECTION = D

Q1. The sum of the digits of a two-digit number is 9 . Also, nine times this number is twice the number  obtained by reversing  the order of the digits . Find the number .

Solution:  Let  and  be the ten’s and the unit’s digits of the number respectively.

Therefore,  the first number is and when the digits are reversed , then the number is  .

 A/Q, 

And  

Putting  in equation , we get   

Thus , the number  .

Q2. Solve the following  pairs of equations by reducing them to a pair of linear equations :       ;           [SEBA 2017 , 19]

Solution:  Let       and

We have,        

and   

   

Putting in equation  we get ,   

  

Therefore,     

         

and         

      

Q3. Solve the following  pairs of equations by reducing them to a pair of linear equations :

         ;       

Solution :     Let     and      

 We have,      

 

and    

 

   

 

  

Putting the value of  in equation  , we get

 

Therefore,     

and         

Q4. The taxi charges in a city consist of a fixed charge together with the charge for the distance covered . For a distance of 10 km , the charge paid is Rs. 105 and for a journey of 15 km, the charge paid is Rs. 155 . What are the fixed charges and the charge per km ? How much does a person have to pay for travelling a distance of 25 km ?

Solution:  let,  and  be the fixed charge and the charge per km respectively  .

 A/Q, 

and 

 

  

     

Putting  in equation  we get

         

       

 Therefore, a person have to pay for travelling a distance of 25 km Rs. (  )  Rs.(  )  Rs.(  )    Rs.  

 Class 10 Pair of Linear Equations in Two Variables 5 marks Questions and Answers

  SECTION = E

Q1. It can take 12 hours to fill a swimming pool using two pipes . If the pipe of largest diameter is used for 4 hours and the pipe of smallest diameter for 9 hours, only half the pool can be filled. How long would it take for each pipe to fill the pool separately ?

Solution:  let  and  (in hours) be the time taken by the pipe of larger diameter and smallest diameter  to fill the pool respectively .

In 1 hour,   the pipe of larger diameter fills is   .

and in 1 hour,   the pipe of smaller diameter fills is  .

A/Q,     and         

let         and    

   

 

and 

        [ From   ]

       

 Putting    in  , we get 

      

           

and      

So, the pipe of larger diameter alone can fill the pool  20 hours and the pipe of smaller diameter alone can fill the pool in 30 hours .

Q2.  Solve for  and  :         ;     

Solution:   We have ,

          and                                                       

Let,       and       

  

 

and

  [ From   ]

     

Putting    in  , we get 

  

       and   

     

 

     

 

 

   

  Hence ,  and  is the required solution of the given pair of equations .

Q3. Roohi travels 300 km to her home party by train and partly by bus . He takes 4 hours if she travels 60 km by train and the rest by the bus . If she  travels 100 km by train and the remaining by bus ,she takes 10 minutes longer . Find the speed of the train and the bus separately .

Solution:  let and  are the speed of the train and the bus respectively .

A/Q ,      

 

 

and    

 

 

Let,      and  

 

and   

 

 

 

Putting  the value of  in  , we get

 

       

   and   

             

Therefore, the speed of the train and the bus are 60 km/hrs  and 80 Km/hrs.

Q4.  A boat goes 30 km upstream and 44 km downstream in 10 hours . In 13 hours, it can go 40 km upstream and 55 km down-stream . Determine the speed of the stream and that of the boat in still water .

Solution :  let,  and  (in km/h) be the speed of the boat in still water and the speed of the stream .

Therefore, the speed of the boat downstream  km/h and  the speed of the boat upstream  Km/h

A/Q ,     10    and     13

let,         and          

   

 

and        

 

   

Putting the value of  in Eq.  we get ,

 ×  

      

Now,       

  

 and      

 

     

        

Hence, the speed of the boat in still water is 8 km/h and the speed of the stream is 3 km/h . 

Q6.  2 women and 5 men can together finish an embroidery work in 4 days, while 3 women and 6 men can finish it in 3 days . Find the time taken by 1 women alone to finish the work, and also that taken by 1 man alone .  [ SEBA 2016]

Solution:  let time taken by 1 woman  and 1 man to finish the work  and  days respectively .

A/Q ,   

and      

 

 let        and      

                   

and         

     

 and   

 

       

  Putting the value of  in equation   we get

    

          

 

   

   

               

 and             

Thus time taken by 1 woman  and 1 man to finish the work 18 days and 36 days respectively .

Q7. Draw the graphs of the equation  and   . Determine the coordinate  of the vertices of the triangle formed by these lines and the x-axis, and shaded the triangular region.

Solution:  We have ,

              

                                 

 

 – 1 

   0

  1

 

   0

  1

  2

 and     

       

       

     

   4

   0

   2

   

   0

   6

   3

 Plot the points A( – 1,0) , B(0,1) , C(1,2) ,D(4,0) , E(0,6) and F(2,3) on graph paper, and join the points to form the lines PQ and RS as shown in figure . We get the shaded triangle AFD with vertices A(– 1, 0)  , F(2,3) and D(4,0) . 

 

Q8. Solve the following pair of equation by reducing them to a pair of linear equations:

        ;   

Solution:   We have ,

                

and 

Let,         and 

              ;            

and   

 

  

     

 

       

     

 and   

 

 

   

 

   

Hence,   and   is the required solution of the given pair of equations .