• Dispur,Guwahati,Assam 781005
  • mylearnedu@gmail.com

4. Linear Equations in Two Variables

Class 9 Mathematics Chapter 4. Linear Equations in Two Variables

Chapter 4. Linear Equations in two variables

Important Note :

1. An equation of the form , where  and  are real numbers, such that  and  are not both zero, is called a linear equation in two variables.
2. A linear equation in two variables has infinitely many solutions.
3. The graph of every linear equation in two variables is a straight line.

i.e., 
4.  is the equation of the -axis and  is the equation of the -axis.
5. The graph of  is a straight line parallel to the -axis.

i.e.,
6. The graph of  is a straight line parallel to the -axis.

i.e.,
7. An equation of the type  represents a line passing through the origin.

i.e.,

8. Every solution of the linear equation is a point on the graph of the linear equation.

------------------------------------------------------------------------------------------------------------------------------------------

EXERCISE 4.1

1. The cost of a notebook is twice the cost of a pen . Write a linear equation in two variables to represent  this statement . [ Take the cost of a notebook to be Rs.  and that of a pen to be Rs.  ]

Solution: Let the cost of a notebook to be Rs.  and a pen to be Rs.  respectively .

 A/Q , 

2. Express the following linear equations in the form  and indicate the values of  and  in each case :

(i)     (ii)      (iii)        (iv)     (v)         (vi)       (vii)        (viii)

Solution:   (i) 

   

Here,  and   

   (ii)

   

     

    Here,  and  

   (iii) 

    

     Here,  and   

   (iv) 

    

   Here,  and  

   (v)

       

      Here,  and   

  (vi)  

       

    Here,  and    

  (vii) 

        

    Here,  and  

  (viii) 

     

   

    Here,  and   

EXERCISE 4.2

1. Which one of the following options is true , and why ?  has
   (i) a unique solution,   (ii) only two solutions ,   (iii) infinitely many solutions .

Solution: (iii)  has infinitely many solutions . Because , a linear equation in two variables has infinitely many solutions .

2. Write four solutions for each of the following equations :

   (i)        (ii)     (iii)   

Solution :  (i) 

      

Taking x , then we get   .

Taking x , then we get   .

Taking x , then we get  .

Taking x , then we get  .

Therefore, the four solutions are  and  .

(ii)   

  

Taking   , then we get y .

Taking   , then we get y .

Taking   , then we get y .

Taking   , then we get y  .

Therefore, the four solutions are  and  .

(iii)    

Taking  x  , then we get   .

Taking x  , then we get  .

Taking x  , then we get  .

Taking  x  , then we get  .

Therefore , the four solutions are  and  .

3. Check which of the following are solutions of the question   and which are not :
(i)      (ii)    (iii)    (iv)      (v)  

Solution: (i)   

 Here ,  

 L.H.S :

 So,  is not a solution of    .

 (ii)   

  Here ,  

   L.H.S :  

  So,  is not a solution of   .

 (iii)   

  Here ,  

  L.H.S :   

  So,  is a solution of  .

 (iv)     

 Here ,  

 L.H.S:  

 So, is a solution of   .

(v)   

Here ,  

 L.H.S:  

So,   is a solution of    .

4. Find the value of k , if  is a solution of the equation .

Solution:  Here,  

We have ,

  

 

  

EXERCISE 4.3

1. Draw the graph of each of the following linear equations in two variables :
(i)      (ii)        (iii)         (iv)

Solution:  We have,

 

If ,then

If  , then

If  , then  

   

     0

     3

    2

  

     4

     1

     2

Graph :

 

(ii) Solution:  We have,

  

If  ,then

If   , then

If  , then 

    

     2

     0

    4

    

     0

   – 2

    2

Graph :

(iii)  Solution:  We have,

If ,then

If  , then

If  , then 

    

     1

     – 1

    2

    

     3

   – 3

    6

Graph:

(iv) Solution:  We have, 

 

If ,then

If  , then

If  , then 

   

    0

    1

    2

   

    3

    1

   – 1

Graph:

 

2. Give the equation of the two lines passing through .How many more such lines are threre, and why?

Solution:  Since, (2 , 14) is a solution of a linear equation .

So, the equation of the two lines passing through  are  and .

There are infinitely many lines are satisfied by the coordinates of the point (2,14) .

3. If the point  lies on the graph of the equation ,find the value of .

Solution : Here ,   ,   

We have,

Therefore, the value of  is .

4. The taxi fare in a city is as follows : for the first kilometer , the fare is Rs 8 and for the subsequent distance it is Rs 5 per km.Taking the distance covered as  km and total fare as Rs , write a linear equation for this information ,and draw its graph,

Solution: let the distance covered as  km and total fare as Rs  .

A/Q , 

 

For graph :  We have ,  

  If  , then

If , then

If , then

    

    0

   – 1 

   – 2

   

    3

   – 2

    – 7

Graph:

 

5. From the choices given below ,choose the equation whose graphs are given in the fig 4.6 and fig 4.7.
 For Fig. 4.6                                      
(i)                                           
(ii)                                     
(iii)                                        
(iv)                                
For Fig. 4.7
(i)        
(ii)          
(iii)                                                                                             
(iv)    
 

Solution:  In figure 4.6 ,

Given the points of the line are :

    

     0 

    1

    – 1

    

     0

    – 1

     1

(i) We have,        

If  ,then    

Therefore , is not the point of the line .                                                 

 (ii) We have, 

 

If  , then      

If  , then  

Therefore,  and  are the points of the line .  

So, the linear equation of the given figure is  .                                                                                            

(iii)We have,  

 If  , then      

Therefore,  is not the point of the line .                                                                                                

(iv) We have,

If  , then

Therefore,   is not the point of the line .                                                 

For Fig. 4.7 :     

In figure 4.7 ,

Given the points of the line are :

    

      2

     0

    – 1

    

      0

     2

    3

(i) We have,        

If  , then      

Therefore,  is not the point of the line .                                                

(ii) We have,          

If  , then   

If  , then      

Therefore ,  is not the point of the line .                                                

(iii) We have,

  If   , then   

If  , then

 If  , then

Therefore ,  and  is the point of the line .                                                 

 So, the linear equation of the given figure is  .                                                                                                                                   

(iv) We have, 

    

  If   , then        

Therefore ,  is not the point of the line .                                                 

6. If the work done by a body on applicatuion of a constants force is directly proportional to the distance travelled by the body, express in the form of an equation in two variables and draw the graph of the same by taking the constant force as 5 units . Also read from the graph the done when the distance travelled by the body is   (i) 2 units   (ii) 0 units

Solution: let  be the work done and  be the distance travelled by the body .

We know that,   the work done  the constant forcethe distance  

A/Q, 

 

For graph :  We have,  

If  , then

If  , then

If  , then

    

     5

      – 5

      10

    

     1

     – 1

       2

Graph:

 

(i)  Given,  units  

We have,  

    units

(ii) Given,  units  

We have,  

    units

7. Yamini and Fatima ,two students of of a school, together contribute  towards the prime minister’s Relief found to help the earthquake victims. Write a linar equation which satisfies the data. (You may take their contributions as  and .)Draw the graph of the same .

Solution:  let  and  (in Rs)be contributions of Yamini and Fatima respectively .

A/Q,

For graph : We have,

  

If ,then

If   then

If  then

    

     0

      60

     40

   

   100

      40

     60

8. In countrie like USA and Canada , temperature is measured in Fahrenheit, whereas in country like India , it is measured in Celsious . Here is a linear equation that converts Fahrenheit to Celsious :
                       
(i) Draw the graph of the linear equation  above using Celsious for and Fahrenheit for .
(ii) If the temperature is , what is  temperature in Fahrenheit ?
(iii) If the temperature  is , what is the temperature in Celsious ?
(iv) If the temperature is ,what is the temperature in Fahrenheit and if the temperature is , what is temperature in Celsious ?    
(v)Is there a temperature which is numerically the same in both Fahrenheit and Celsious ? If yes, find it .

Solution: (i)  We have , 

If   , then           

If   , then                                   

If  , then       

For graph :

      (Celsious)

       0

       5

    10

     (Farenheit)

      32

     41

    50

(ii) We have ,

  Given ,  

So,        

(iii)   We have ,

Given ,      

So,

(iv) We have,

Given, 

Again ,

  

(v)  We have ,

Given,  

So,

Therefore ,   and .

 EXERCISE 4.4

1. Give the geometric representations  of  as an equation
 (i) in one variable    (ii) in two variables

Solution: (i) We have ,

The representation of the solution on the number line is given below :

Where  is an equation in one variable .

(ii) We have, 

 

  So,   is a linear equation in the variables  and  . This is represented by a line . Hence , three solutions of the given equation are :

     

     1

      2

     3

     

     3

     3

     3

2.  Give the geometric representations of   as an equation
 (i) in one variable
(ii) in two variables

Solution: (i)  We have,

 

 

       

The representation of the solution on the number line is given below :

Where  is an equation in one variable .

(ii) We have ,

 

 

So,  is a linear equation in the variables  and  . This is represented by a line . Hence , three solutions of the given equation are :         

    

   – 4.5

   – 4.5

  – 4.5

    

     1

      2

     3