• Dispur,Guwahati,Assam 781005
  • mylearnedu@gmail.com

13 . STATISTATICS

CBSE Class 11 Maths Chapter 13 Statistatics

Chapter 13. STATISTATICS

Class 11 Maths Chapter 13 Statistatics Exercise 13.1 Solutions :

 Find the mean deviation about the mean for the data in Exercises 1 and 2.

1.   4, 7, 8, 9, 10, 12, 13, 17
2.  38, 70, 48, 40, 42, 55, 63, 46, 54, 44

Solution :  1. We arrange the data in ascending order :

          4, 7, 8, 9, 10, 12, 13, 17

We know that , Mean of deviations

          

       

         4

     |4 – 10| = 6

         7

      |7 – 10| = 3

        8

      |8 – 10| = 2

         9

       |9 – 10| = 1

          10

       |10 – 10| = 0

        12

        |12 – 10| = 2

         13

       |13 – 10| = 3

         17

        |17 – 10| = 7

    

       

M.D .
2. We arrange the data in ascending order :

     38 , 40 , 42 , 44 , 46 , 48 , 54 , 55 , 63 , 70

We know that ,  Mean of deviations

          

           

          38

    |38 – 50| = 12

         40

   |40– 50| = 10

         42

   |42 – 50| = 8

         44

   |44 – 50| = 6

         46

    |46 – 50| = 4

         48

    |48 – 50| = 2

         54

    |54 – 50| = 4

         55

    |55 – 50| = 5

         63

   |63 – 50|=13

         70

    |70 – 50| = 20

  

   

M.D .
3. Find the mean deviation about the median for the data in Exercises 3 and 4.

13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17

Solution : 3. We arrange the data in ascending order :

    10 , 11 , 11 , 12 , 13 , 13 , 14 , 16 , 16 , 17 , 17 , 18

Here ,  (Even)

Median (M)

       

       |

10

11

11

12

13

13

14

16

16

17

17

18

|10 – 13.5|= 3.5

|11– 13.5| = 2.5

|11– 13.5| = 2.5

|12– 13.5| = 1.5

|13– 13.5| = 0.5

|13– 13.5| = 0.5

|14– 13.5| = 0.5

|16– 13.5| = 2.5

|16– 13.5| = 2.5

|17– 13.5| = 3.5

|17– 13.5| = 3.5

|18– 13.5| = 4.5

 

   

 M.D. (M)

4. Find the mean deviation about the median for the data in Exercises 3 and 4.

36, 72, 46, 42, 60, 45, 53, 46, 51, 49

Solution :  We arrange the data in ascending order :

36 , 42 , 45 , 46 , 46 , 49 , 51 , 53 , 60 , 72 

Here ,  (Even)

Median (M) 

          

        

36

42

45

46

46

49

51

53

60

72

|36 – 47.5| = 11.5

|42 – 47.5| = 5.5

|45 – 47.5| = 2.5

|46 – 47.5| = 1.5

|46 – 47.5| = 1.5

|49 – 47.5| = 1.5

|51 – 47.5| = 3.5

|53 – 47.5| = 5.5

|60 – 47.5| = 12.5

|72 – 47.5| = 24.5

 

    

M.D.(M)


5. Find the mean deviation about the mean for the data in Exercises 5 and 6.

      : 5        10      15      20      25
       : 7        4        6        3         5

Solution : 5.

  

      

       

     

 

5

10

15

20

25

7

4

6

3

5

35

40

90

60

125

|5 – 14| =  9

|10 – 14| = 4

|15 – 14| = 1

|20 – 14| = 6

|25 – 14| = 11

63

16

6

18

55

 

 

   

 

158

Mean

M.D.

6. Find the mean deviation about the mean for the data in Exercises 5 and 6.

         :  10      30     50      70      90
         :   4       24     28      16        8

Solution : We have,

     

        

      

      

    

10

30

50

70

90

4

24

28

16

8

40

720

1400

1120

720

|10– 50| =  40

|30 – 50| = 20

|50 – 50| = 0

|70 – 50| = 20

|90 – 50| = 40

160

480

0

320

320

 

  

   

 

1280

Mean

M.D.
7.Find the mean deviation about the median for the data in Exercises 7 and 8.

      :  5     7     9     10    12    15
       :  8     6     2       2     2       6

Solution : We have,

  

         

C.F.

      

     

5

7

9

10

12

15

8

6

2

2

2

6

8

14

16

18

20

26

|5 – 7| =  2

|7 – 7| = 0

|9 – 7| = 2

|10 – 7| = 3

|12 – 7| = 5

|15 – 7| = 8

16

0

4

6

10

48

 

 

 

84

Here ,  (even)

Median (M)

M.D. (M)

8. Find the mean deviation about the median for the data in Exercises 7 and 8.

     :  15     21     27    30    35
     :   3      5        6      7      8

Solution : We have,

    

        

    C.F.

        

 

15

21

27

30

35

3

5

6

7

8

3

8

14

21

29

|15 – 30| =  15

|21 – 30| = 9

|27 – 30| = 3

|30 – 30| = 0

|35 – 30| = 5

45

45

18

0

40

 

  

 

 

148

Here ,  (odd)

Median (M)

M.D. (M)
9.Find the mean deviation about the mean for the data in Exercises 9 and 10.

   Income per day (in Rs)

   Number of persons

              0 – 100

                4

           100 – 200  

                8

            200 – 300

               9

            300 – 400

             10

            400 – 500

               7

            500 – 600

               5

            600 – 700

               4

            700 – 800

               3

Solution : We have ,

Income per day

Mid-points

()

No. of Students ()

    

     

  

0 – 100

100 – 200

200 – 300

300 – 400

400 – 500

500 – 600

600 – 700

700 – 800 

50

150

250

350

450

550

650

750

4

8

9

10

7

5

4

3

200

1200

2250

3500

3150

2750

2600

2250

|50 - 358| = 308

|150 – 358| = 208

|250 – 358|=108

|350 – 358| = 8

|450 – 358|=92

|550 – 358|=192

|650 – 358|= 292

|750 – 358|= 392

1232

1664

972

80

644

960

1168

1176

 

 

50

17900

 

7896

 

M.D.

10.Find the mean deviation about the mean for the data in Exercises 9 and 10.

Height in cms

Number of boys

     95 – 105

            9

   105 – 115

          13

   115 – 125

          26

   125 – 135

          30

   135 – 145

          12

   145 – 155

          10

Solution : We have,

   Class interval

   

   

 

   

        

  

95 – 105

105 – 115

115 – 125

125 – 135

135 – 145

145 – 155

9

13

26

30

12

10

100

110

120

130

140

150

 – 3

– 2

 – 1

0

1

2  

– 27

–26

–26

0

12

20

 |100 – 125.3| = 25.3

|110 – 125.3| = 15.3

|120 – 125.3| = 5.3

|130 – 125.3| = 4.7

|140 – 125.3| = 14.7

|150 – 125.3| = 24.7

227.7

198.9

137.8

141.0

176.4

247.0

 

100

 

 

– 47

 

1128.8

Here,

 So, 

M.D.

11. Find the mean deviation about median for the following data :

    Marks

   Number of Girls

     0 – 10 

               6

   10 – 20

               8

   20 – 30

              14

   30 – 40

              16

40 – 50

               4

50 – 60

               2

Solution : We have

Marks

    

     

C.F.

       

 

0 – 10

10 – 20

20 – 30

30 – 40

40 – 50

50 – 60

5

15

25

35

45

55

6

8

14

16

4

2

6

14

28

44

48

50

|5 – 27.68| = 22.86

|15 – 27.68|= 12.68

|25 – 27.68| = 2.68

|35 – 27.68| = 7.14

|45 – 27.68| = 17.14

|55 – 27.68| = 27.14

137.16

102.88

40.04

114.24

68.56

54.28

 

 

50

 

 

517.16

Here, , , , C.F. = 14

Median

M.D.(M)

12. Calculate the mean deviation about median age for the age distribution of 100 persons given below:

  Age (in years)

  Number

       16 – 20

       5

       21 – 25 

        6

       26 – 30

      12

       31 – 35

      14

       36 – 40

      26

       41 – 45

      12

       46 – 50

      16

       51 – 55

       9

[Hint Convert the given data into continuous frequency distribution by subtracting 0.5
from the lower limit and adding 0.5 to the upper limit of each class interval]

Solution : We have,

Age

   

    

CF

    

  

15.5 – 20.5

20.5 – 25.5

25.5 – 30.5

30.5 – 35.5

35.5 – 40.5

40.5 – 45.5

45.5 – 50.5

50.5 – 55.5    

18

23

28

33

38

43

48

53

5

6

12

14

26

12

16

9

5

11

23

37

63

75

91

100

|18 – 38|= 20

|23 – 38| = 15

|28 – 38| = 10

|33 – 38| = 5

|38 – 38| = 0

|43 – 38| = 5

|48 – 38| = 10

|53 – 38| = 15 

100

90

120

70

0

60

160

135

 

 

100

 

 

735

Here,   ,, CF = 37

Median

M.D.(M)

Class 11 Maths Chapter 13 Statistatics Exercise 13.2 Solutions :

1. Find the mean and variance for each of the data in Exercies 1 to 5.

6, 7, 10, 12, 13, 4, 8, 12

Solution : We have ,

       

      

6

7

10

12

13

4

8

12

36

49

100

144

169

16

64

144

   

  

Mean

Variance

2. Find the mean and variance for each of the data in Exercies 1 to 5.

First natural numbers

Solution : We have ,

           

          

1

2

3

 

 

 

 

 

 

 

 

  

 

Mean

Variance

3.Find the mean and variance for each of the data in Exercies 1 to 5.

First 10 multiples of 3

Solution :  List of  10 multiples of 3 :

   3 , 6 , 9 , 12 , 15 , 18 , 21 , 24 , 27 , 30

        

         

3

6

9

12

15

18

21

24

27

30

9

36

81

144

225

324

441

576

729

900

   

   

Mean

Variance

4.Find the mean and variance for each of the data in Exercies 1 to 5.

   

   6

   10

   14

   18

   24

  28

   30

    

   2

    4

    7

   12

   8

   4

    3

Solution : We have ,

    

      

    

    

     

6

10

14

18

24

28

30

2

4

7

12

8

4

3

36

100

196

324

576

784

900

12

40

98

216

192

112

90

72

400

1372

3888

4608

3136

2700

130

n = 40

 

760

16176

Mean

Variance

5.Find the mean and variance for each of the data in Exercies 1 to 5.

  

  92

   93

   97

   98

   102

   104

  109

   

    3

    2

    3

   2

     6

    3

   3

Solution : We have,

    

      

    

         

        

92

93

97

98

102

104

109

3

2

3

2

6

3

3

8464

8649

9409

9604

10404

10816

11881

276

186

291

196

612

312

327

25392

17298

28227

19208

62424

32448

35643

 

   

 

  

   

Mean

Variance

6. Find the mean and standard deviation using short-cut method.

  

  60

   61

  62

  63

   64

   65

  66

  67

   68

   

   2

    1

   12

  29

   25

   12

   10

   4

   5

Solution : We have,

  

      

  

     

      

        

60

61

62

63

64(A)

65

66

67

68

2

1

12

29

25

12

10

4

5

  – 4

 – 3

 – 2

 – 1

0

1

2

3

4    

16

9

4

1

0

1

4

9

16

 – 8

 – 3

 – 24

– 29

0

12

20

12

20

32

9

48

29

0

12

40

36

80

 

 

0

 

    

  

Mean

Standard deviation
7.Find the mean and variance for the following frequency distributions in Exercises 7 and 8.

    Classes

  Frequencies

     0 – 30

          2

    30 – 60

          3

    60 – 90

           5

    90 – 120

          10

   120 – 150

            3

   150 – 180

            5

   180 – 210

            2

Solution : We have ,

Classes

      

  

 

   

   

     

0 – 30

30 – 60

60 – 90

90 – 120

120 – 150

150 – 180

180 – 210

15

45

75

105 (A)

135

165

195

2

3

5

10

3

5

2

    – 3

 – 2

– 1

0

1

2  

 3

9

4

1

0

1

4

9

 – 6

– 8

– 1

0

1

8

27    

18

12

5

0

3

20

18

 

 

30

 

 

2

76

Here,  ,  ,  ,    

Mean

Variance

8.Find the mean and variance for the following frequency distributions in Exercises 7 and 8.

   Classes

   Frequencies

      0 – 10

          5

     10 – 20

           8

     20 – 30

          15

     30 – 40

          16

     40 – 50

          6

Solution : We have,

Classes

     

    

  

  

     

    

0 – 10

10 – 20

20 – 30

30 – 40

40 – 50

5

15

25

35

45

5

8

15

16

6

    – 2

– 1

0

1

2  

4

1

0

1

4

 – 10

 – 8

0

16

12     

20

8

0

16

24

 

 

50

 

 

10

68

Here,   ,  ,  ,    

Mean

Variance

9. Find the mean, variance and standard deviation using short-cut method

Height in cms

No. of children

       70 – 75

            3

       75 – 80

            4

       80 – 85

             7

      85 – 90

             7

      90 – 95

             15

      95 – 100

              9

     100 – 105

             6

     105 – 110

             6

     110 – 115

             3

Solution : We have,

Classes

      

   

 

 

   

 

70 – 75

72.5

3

 – 4

16

 – 12

48

75 – 80

77.5

4

 – 3

9

– 12

36

80 – 85

82.5

7

 – 2

4

– 14

28

85 – 90

87.5

7

 – 1

1

 – 7

7

90 – 95

92.5 (A)

15

0

0

0

0

95 – 100

97.5

9

1

1

9

9

100 – 105

102.5

6

2

4

24

24

105 – 110

107.5

6

3

9

18

54

110 – 115

112.5

3

4

16

12

48

 

 

60

 

 

6

254

Here,  ,  ,  ,   

Mean

Variance

Standard deviation

10. The diameters of circles (in mm) drawn in a design are given below:

   Diameters

  No. of circles

    33 – 36

           15

    37 – 40

           17

    41 – 44

           21

    45 – 48

           22

    49 – 52

           25

Calculate the standard deviation and mean diameter of the circles.
[ Hint First make the data continuous by making the classes as 32.5-36.5 , 36.5-40.5 , 40.5-44.5 , 44.5 - 48.5 , 48.5 - 52.5 and then proceed.]

Solution : We have,

Classes

        

   

  

  

    

  

32.5 – 36.5

36.5 – 40.5

40.5 – 44.5

44.5 – 48.5

48.5 – 52.5

34.5

38.5

42.5 (A)

46.5

50.5

15

17

21

22

25

 – 2

 – 1

0

1

2

4

1

0

1

4

 – 30

– 17

0

22

50   

60

17

0

22

100

Total

 

100

 

 

25

199

Here,  ,  ,  ,   

Mean

Variance

Class 11 Maths Chapter 13 Statistatics Miscellaneous Exercise Solutions :

1. The mean and variance of eight observations are 9 and 9.25, respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.

Solution :  Let the other two observations be  and   .

Here , , and

So, the series is  6 , 7 , 10 , 12 , 12 , 13 , ,   .

Mean

 

Variance

 [From (i) ]

  or 

   , 

  

Putting  in (i) , we get 

Putting   in (i) , we get

Thus, the remaining observations are 4 and 8 .
2. The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12, 14. Find the remaining two observations.

Solution :  Let the other two observations be  and  .

Here ,  , and

So, the series is  2 , 4 , 10 ,12 , 14 , ,

Mean

Variance

 [From (i) ]

 or

   ,

  

Putting   in (i) , we get 

Putting   in (i) , we get

Thus, the remaining observations are 6 and 8 .
3. The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.

Solution : Let the observations be   and be their mean

Here ,  , and

We have,  Variance

 

If each observation is multiplied by 3, and the new resulting observations are  , then

From (i) , (ii) and (iii) , we get   

 

Thus the variance of new observations

4. Given that  is the mean and  is the variance of  observations  Prove that the mean and variance of the observations  are   and , respectively, (

Solution : Mean of the observations :   .

Mean

Again , mean of the observations  :

Mean

Hence, the mean of    is .

Variance of the observations : 

Variance

Again , variance of the observations  :   .

Variance

Hence, the variance of  is   .

5. The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted. (ii) If it is replaced by 12.

Solution : (i) If wrong item is omitted.

 Mean

 Standard deviation

Number of observations

   Mean,

 

     [8 is omit ]

Correct   

Number of correct observations = 20 – 1 = 19 [one observation omit .]

New mean

We have,

 

 

Correct

The standard deviation

(ii) If it is replaced by 12.

    

   [ 8 is replaced by 12 ]

Correct   

New mean

We have,

 

 

Correct

The standard deviation

6. The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.

Solution : Given,  Mean

 Standard deviation

Number of observations

          

  

The incorrect observations are: 21, 21, 18.

 

Correct  

Number of correct observations = 100 – 3 = 97

New mean

We have,

 

The incorrect observations are: 21, 21, 18 .

 Correct

The standard deviation